Energy and Exergy Analysis of the Danish Industry Sector

Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

Published in:
Proceedings of the 10th Conference on Sustainable Development of Energy, Water and Environment Systems

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Energy and Exergy Analysis of the Danish Industry Sector

Fabian Bühler*
Department of Mechanical Engineering
Technical University of Denmark, Kgs. Lyngby, Denmark
e-mail: fabuhl@mek.dtu.dk

Tuong-Van Nguyen, Brian Elmegaard
Department of Mechanical Engineering
Technical University of Denmark, Kgs. Lyngby, Denmark
e-mail: tungu@mek.dtu.dk, be@mek.dtu.dk

ABSTRACT
A detailed analysis of the Danish industry is presented in this paper using the energy, exergy and embodied exergy methods. The 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industry, were modelled and analysed in details for the years 2006 and 2012. The energy and exergy losses, as well as the exergy destruction, were established, together with the embodied ones, by including the transformation processes in the utility sector. The energy and exergy efficiencies for each sub-sector were calculated in a final step and ranged from 12% to 56% in 2012. Industries with high-temperature processes, such as the cement and metal production sectors, present the highest exergy efficiencies but the lowest energy ones. The opposite conclusion is drawn for the food, paper and chemical industries. The exergy losses, which indicate the potential for recovering and valorising heat, amounted to 3,800 TJ for the same year. Meanwhile, the embodied exergy losses, from the central production of heat and power, exceeded 8,700 TJ. The comparison of the embodied energy efficiencies from 2006 to 2012 shows a clear increase of 4.2%-points, but this trend is not seen with the embodied exergy efficiency, which remains at around 29% for the Danish industry. This analysis shows that there are still large potentials to recover waste heat in most Danish industrial sectors and thus to increase their efficiencies.

KEYWORDS
Exergy, Energy, Embodied exergy, Industrial sector, Denmark.

1. Introduction
With an increasing awareness of the environmental impacts and practical limitations associated with the traditional fossil energy carriers, many countries aim to increase the efficiency of the processes using energy, while shifting to more sustainable energy sources. It is thus crucial to understand and analyse the systems where resources and energy are consumed and depleted, in order to plan and steer future developments. The industrial sector is one of the systems consuming the largest quantities of resources. These levels can be expected to further rise as the energy demand increases in pair with the global affluence and population. Denmark has a focus on energy efficiency since the first oil crisis in 1973 and the country has implemented policies on the industrial sector, particularly at the beginning of 1990. Currently, energy efficiency obligations for the Danish energy distribution companies affect all end-consumer sectors, and, since 2013, an investment subsidy scheme promotes the
use of renewable energy and the implementation of energy efficiency measures for industrial processes [1].

The application of energy-based methods is useful for tracking the energy flows within a given system and visualising the conversion from one form of energy to another. However, such tools present some inherent limitations, as they cannot be used for assessing the performance losses within a given system. Unlike energy, exergy can be destroyed by thermodynamic irreversibilities and this concept is used in this work to account for the quality of energy: it thereby better describes the inefficiencies and waste heat recovery potentials of the system.

There have been a number of studies conducted analysing the energy and exergy efficiency of a country. The most notable are the ones conducted for the United States [2], Canada [3], Sweden [4], Turkey [5] and Norway [6]. These works demonstrated the usefulness of thermodynamic methods for depicting opportunities for better energy management, and they showed significant potentials for improvements in both countries.

A review of the studies and methodologies was performed by Utlu and Hepbasli [7,8]. They suggested a formalisation of the methods for modelling the sectoral energy and exergy utilisation, starting from the listing of all energy and exergy inputs and outputs, then with a subgrouping of the sectors into utility, industrial, commercial, residential & transportation, and a further splitting into each end-user.

The work of Dincer et al. [9] focuses on the residential sector of Saudi Arabia, while the one of Hammond et al. [10] deals with the case of the utility sector of United Kingdom. The studies that are the most relevant to the present work may be the ones of Al-Ghandoor et al. [11], who apply embodied energy and exergy methods, and Sanaei et al. [12], both focusing on the industrial sector of a country. The efficiencies for several industries are determined and compared for the cases of United States and Iran. These works, however, do not distinguish between the destroyed exergy due to irreversibilities and the exergy lost to the environment. In addition, great differences in the level of detail, e.g. the number of considered processes, exist amongst them.

This paper presents a detailed analysis of the industry sector in Denmark, using energy, exergy and embodied exergy methods, and is divided as follows. Section 2 presents the methods and approach of this work. Twenty-two industrial sectors, representing 79% of the energy used in the Danish industry, are assessed in order to determine the energy and exergy efficiencies, as well as the destroyed and lost exergy. The efficiencies are calculated based on the scientific literature available for Denmark and on complementary assessments.

Section 3 describes the main results, which (i) show where in the Danish industry the lowest efficiencies and highest losses occur, (ii) document the changes in the industrial sector over the last years, and (iii) pinpoint the industries with potential for the recovering energy and exergy.

In a further step, Section 4 discusses the validity and relevance of the results, which are compared to similar studies performed in this field, while Section 5 concludes the present study and findings.

2. Methodology

2.1 Case study

2.1.1 Industrial Sector

The industry sector in Denmark consists of several subsectors, without being dominated by single industries. The total energy input to the industry sector, excluding the extraction of oil and gas resources, agriculture and the service sector, accumulated to 112 PJ in 2012, which is a
reduction of 12 % compared to 2006 [13]. In this study, the 22 most energy intense industries were selected, which together represented 79 % of the energy consumption of the industrial sector in 2012. For each of these sectors, the energy input from 16 different fuel types (e.g. oil, natural gas, biogas), electricity, district heat and heat pumps is available. In addition, previous publications by the Danish Energy Agency [14,15] provide the distribution of fuels and district heating amongst 12 process categories, such as distillation, heating, evaporation, drying and conversion and transmission losses. The electricity input is distributed between 12 final processes. In this work, the end-consumers for transportation within the industry sector are not considered, reducing the process categories to 10 for the fuels.

![Diagram of processes and energy flows within an industry sector](image1)

Figure 1. Processes and energy flows within an industry sector

2.1.2 Utility sector

In this study, the utility sector is also taken into account. In Denmark, electricity from thermal power plants is almost exclusively produced in combined heat and power plants (CHP), using primarily coal, natural gas and biomass. Furthermore, a share of 29 % of the net electricity produced originated from wind power and 15 % was from net imports in 2012 from the neighbouring countries (e.g. Germany, Sweden and Norway) [16]. Almost 74 % of the district heat is produced in CHP units and the remaining part in heating units. The data from the Danish Energy Agency [16,17] also gives information on the self-consumption of the power plants, as well as on the distribution and transmission losses.

![Diagram of processes and energy flows within the utility sector](image2)

Figure 2. Processes and energy flows within the utility sector.
2.2 Theoretical background

2.2.1 Energy balance

As stated by the 1st law of thermodynamics, energy may be stored, transformed from one form to another (e.g. from mechanical to electrical), but can neither be created nor destroyed. For an open system, energy can be transferred in- and out of the system under study with streams of matter, heat and work. The present work does not consider changes in kinetic (velocities) and potential (heights) energies, which implies that the energy balance in steady-state conditions, on a rate form, is as follows:

\[\sum_{in} \dot{H}_{in} - \sum_{out} \dot{H}_{out} + \sum_{k} \dot{Q}_k - \dot{W} = 0 \] \hspace{1cm} (1)

\[\sum_{in} h_{in} m_{in} - \sum_{out} h_{out} m_{out} + \sum_{k} \dot{Q}_k - \dot{W} = 0 \] \hspace{1cm} (2)

where:
- \(\dot{H} \) denotes the energy associated with a stream of matter;
- \(h \) the specific enthalpy of a material stream;
- \(m \) the mass flowrate of the corresponding stream;
- the subscripts in and out the in- and outflowing streams;
- \(\dot{Q} \) and \(\dot{W} \) the heat and work rates exchanged with the surroundings.

The use of an energy analysis is relevant for tracking the energy flows and the transformation of one form of energy to another across different systems.

2.2.2 Exergy accounting

Unlike energy, exergy can be destroyed and accounts for the use of additional primary energy induced by the system’s imperfections. It can be defined as `the maximum useful work as the system is brought into complete thermodynamic equilibrium with the thermodynamic environment, while the system interacts with it only’. A system in thermal and mechanical equilibrium (same temperature and pressure) with the environment is called in `environmental state’, while it is in `dead state’ if also in chemical equilibrium (same chemical species).

This thermodynamic concept builds on the first and second laws of thermodynamics, reflecting that all transformations are irreversible in nature and generate entropy. The exergy destruction is defined as the difference between the exergy inflowing and outflowing the system under study, and can thus be derived from the previous relations as:

\[\sum_{in} \dot{E}_{in} - \sum_{out} \dot{E}_{out} = \dot{E}_d \] \hspace{1cm} (3)

\[\sum_{in} e_{in} m_{in} - \sum_{out} e_{out} m_{out} + \sum_{k} \dot{E}_{k}^Q - \dot{E}_W = \dot{E}_d \] \hspace{1cm} (4)

where:
- \(\dot{E} \) denotes the exergy associated with a stream of matter, heat or work;
- \(e \) the specific exergy of a material stream;
- \(\dot{E}_k^Q \) and \(\dot{E}_W \) the heat and work exergy rates exchanged with the surroundings;
- \(\dot{E}_d \) the destroyed exergy.
2.2.3 Flow exergy

The specific exergy of a flowing stream of matter consists of physical, chemical, kinetic and potential components. Excluding the kinetic and potential components, the specific exergy can be expressed as follows:

\[e = \left[(h - h_0) - T_0(s - s_0) \right] + \sum_j \left[\mu_j - \mu_{j0} \right] x_j \]

(5)

The first term of the formula describes the physical exergy, which is the maximum useful work that can be extracted from the stream when brought to equilibrium with the environment. The second part, the chemical exergy, is the maximum available work that can be extracted from the stream when brought from the environmental state (denoted with the subscript 0) to the dead state (denoted with the subscript 00). The chemical exergy for the fuels used in the industrial sector was calculated based on their chemical composition in Denmark, where applicable. For liquid and solid fuels, the approach by Szargut et al. [18] and for gaseous fuels by Bejan et al. [19] was used. The ratio of the specific chemical exergy \(e^{CH} \) to the lower heating value of the fuel LHV, \(\varphi \) is given for the different fuels in table 1 and can be calculated with eq. (6).

\[e^{CH} = \varphi \cdot H_f \]

(6)

<table>
<thead>
<tr>
<th>Fuel</th>
<th>LHV (MJ/kg)</th>
<th>(\varphi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinery Gas</td>
<td>52.00</td>
<td>1.161</td>
</tr>
<tr>
<td>LPG</td>
<td>46.00</td>
<td>1.056</td>
</tr>
<tr>
<td>Gasoline</td>
<td>43.80</td>
<td>1.071</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>42.70</td>
<td>1.067</td>
</tr>
<tr>
<td>Diesel</td>
<td>42.70</td>
<td>1.068</td>
</tr>
<tr>
<td>Heavy Fuel Oil</td>
<td>40.65</td>
<td>1.066</td>
</tr>
<tr>
<td>Petroleum coke</td>
<td>31.40</td>
<td>1.048</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>48.03</td>
<td>1.065</td>
</tr>
<tr>
<td>Coal</td>
<td>24.23</td>
<td>1.076</td>
</tr>
<tr>
<td>Coke</td>
<td>29.30</td>
<td>1.048</td>
</tr>
<tr>
<td>Waste</td>
<td>10.50</td>
<td>1.152</td>
</tr>
<tr>
<td>Wood Chips</td>
<td>9.30</td>
<td>1.193</td>
</tr>
<tr>
<td>Wood Pellets</td>
<td>17.50</td>
<td>1.072</td>
</tr>
<tr>
<td>Straw</td>
<td>14.90</td>
<td>1.084</td>
</tr>
<tr>
<td>Biogas</td>
<td>19.83</td>
<td>1.041</td>
</tr>
<tr>
<td>Bio Oil</td>
<td>36.69</td>
<td>1.114</td>
</tr>
</tbody>
</table>

The exergy associated with work is equal to its energy, whilst the exergy transferred with heat depends on the heat transfer and dead state temperatures (in this case, above ambient conditions).

\[\dot{E}_k^0 = (1 - \frac{T_0}{T_k}) \dot{Q}_k \]

(7)

The dead state conditions are selected as a temperature of 15 °C, a pressure of 1.013 bar, and with the reference chemical environment of Szargut. The selection of the environmental
temperature refers to the average conditions in Denmark and has an impact on the calculations of
the chemical energy and exergy of fuels, which can vary in a range of +/- 0.5 % per gradient of
10 °C for the fuels investigated in this study. A varying dead state temperature in the range of 0
to 25 °C showed no significant impact on exergy efficiencies in a sectorial analysis [20].

2.2.4 Energy and exergy efficiency
The energy (η) and exergy (ψ) efficiency of the system is defined below, as the sum of energy
or exergy in the product, divided by the total energy or exergy input to the system.

$$\eta = \frac{\text{energy in product}}{\text{total energy input}}$$ (8)

$$\psi = \frac{\text{exergy in product}}{\text{total exergy input}}$$ (9)

2.3 Application
In the following, the applied techniques are explained for the case of the industrial and utility
sectors of Denmark, and the sources of losses and exergy destruction are pointed out.

2.3.1 Industrial sector

Global approach
Figure 3 shows the overall approach for the determination of energy and exergy losses and the
exergy destructions for the industry sector. For each of the 22 industry sectors, the fuel
consumption for all individual process categories is distributed amongst three temperature levels
and for each level, the mean process temperature is determined. The process information used to
establish this distribution and the mean temperatures originates from several sources, with the
main ones being [14, 15, 21, 22, 23]. The energy losses derive from (i) the conversion and transmission losses, and (ii) the direct use
of fuels and electricity. The first ones, determined by the Danish Energy Agency [14,15], take
into account the conversion of fuels to a secondary energy carrier, which is supplied to the
processes. Transmission losses occur primarily in the boilers and in the steam and hot water
distribution systems. The magnitude of these losses differs from sector to sector: it is impacted
by the process type and the share of room heating within the total heating demand. The heat
rejected to the environment (waste heat) has a temperature of up to 260 °C, and does not exceed
150 °C for about 50% (45% in 2006) of these sources, since waste heat recovery equipment are
installed [24,25].

The second type of energy losses result from the direct use of fuels and electricity in the process
and thermal losses of high-temperature processes. Examples of these processes are drying of
gravel in direct-fired dryers or melting of metals in furnaces, where the energy used within the
sector is directly utilised in the process. The efficiency for direct process heating is dependent on
the process temperature and is presented in Table 2. The applied efficiencies are based on Rosen
[3] and Dincer et al. [26] but are adjusted to Denmark. For temperatures below 120 °C, the fuel
heating efficiency is 100 %, as this heat is almost fully supplied by secondary energy carriers for
which the conversion and transmission losses were applied. The values of the waste heat
temperatures for the losses in the direct conversion and high temperature components are based
on literature data [25,27].
Table 2. Energy efficiency for heating with fuels and electricity used in the industry sector.

<table>
<thead>
<tr>
<th>Range</th>
<th>Direct Heating Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electrical</td>
</tr>
<tr>
<td>(°C)</td>
<td>(%)</td>
</tr>
<tr>
<td>Low</td>
<td>< 120</td>
</tr>
<tr>
<td>Medium</td>
<td>120 - 380</td>
</tr>
<tr>
<td>High</td>
<td>> 380</td>
</tr>
</tbody>
</table>

For electricity use in machinery and the facilities (excl. process and room heating), efficiencies for the conversion were taken from [28], assuming large-scale units with an average load rate of between 70 to 80 %. The production of combined heat and power within the industry is not taken into account, as data on a sectorial level is not available.

Figure 3. Flow chart of the methodology for the analysis of the industrial sector with the fuels and considered processes.

Process heat and room heating

First, the thermal energy used for the processes \(\dot{Q}_p \) is determined based on the energy distribution for the different processes. The losses for fuel conversion are subtracted, and for the direct use of fuels and electricity, the efficiency is defined based on the temperatures as shown in Table 2.
\[
\sum_{i,j} \dot{m}_{f,i,j} (LHV)_i = \sum_{i,j} \dot{Q}_{p,i,j} + \sum_{i,j} \dot{Q}_{l,i,j} \quad (10)
\]

The exergy in the product \(\dot{E}_p^O \) is found with equation (11) based on the average process temperature \(T_p \) and the thermal energy \(\dot{Q}_p \) of the product. The exergy losses \(\dot{E}_L^O \) are found in the same manner as a function of the mean waste heat temperature \(T_w \) and the thermal energy loss \(\dot{Q}_L \).

The rate of exergy destruction \(\dot{E}_d \) of each process and fuel is found by subtracting the exergy in the product and losses from the total exergy into the process.

\[
\dot{E}_p^O = (1 - \frac{T_0}{T_p}) \dot{Q}_p \\
\dot{E}_L^O = (1 - \frac{T_0}{T_w}) \dot{Q}_L \\
\dot{E}_d = e^{\text{CH}} \dot{m}_f - \dot{E}_p^O - \dot{E}_L^O \quad (13)
\]

Process and facility electric use

The use of electricity in processes and facility is based on the electric efficiency of the units \(\eta_e \).

The useful work \(\dot{W} \) retrieved from the electric energy in \(\dot{W}_e \) can be calculated using Eq.(14).

As work and electric energy are equal to the exergy of work and electricity, Eq.(14) also applies to the exergy calculations.

\[
\dot{W} = \eta_e \dot{W}_e \\
\quad (14)
\]

Efficiency of each industry sector

For each sector, the process heating efficiency \(\eta_{pr,h} \) is defined as the ratio of the sum of the thermal energy in the products and the total energy input to the thermal processes in the sector.

\[
\eta_{pr,h} = \left(\frac{\sum_j \dot{Q}_{p,j}}{\sum_i \dot{m}_{f,i}(LHV)_i} \right) \\
\quad (15)
\]

where:

- \(\dot{Q}_{p,j} \) denotes the heat transfer associated with the process \(j \);
- \(\dot{m}_{f,i} \) the mass flowrate of the fuel \(i \);
- \((LHV)_i \) is the lower heating value of the fuel \(i \).
Similar to the energy efficiency the exergy efficiency for process heating $\psi_{pr,h}$ is defined as:

$$
\psi_{pr,h} = \left(\frac{\sum_{j} \dot{E}_{j}^{Q}}{\sum_{i} \dot{m}_{j,i} \varphi_{i} (LHV)} \right)
$$

(16)

where:

- E_{j}^{Q} denotes the exergy transfer associated with heat transfer $Q_{p,j}$ of the process j;
- φ_{i} is the fuel to exergy ratio of the fuel i.

For the electric heating efficiency, the sum of heat transfer for the processes is divided by the electric work into the system. For the exergetic electric heating efficiency, the exergy transfer associated with the heat transfer is used. The efficiency for the use of mechanical work in the processes is derived with the following equation, where the energy ($\eta_{pr,e}$) and exergy ($\psi_{pr,e}$) efficiency are equal.

$$
\eta_{pr,e} = \psi_{pr,e} = \left(\frac{\sum_{j} W_{j}}{\sum_{j} W_{e,j}} \right)
$$

(17)

where:

- W_{j} denotes the work of the process j;
- $W_{e,j}$ is the electrical work into the process j.

For the facilities, the efficiencies are found by analogy to the process efficiencies, with the energy ($\eta_{fa,h}$) and exergy ($\psi_{fa,h}$) efficiency for the heating processes within the facility, as well as for the electricity use ($\eta_{fa,e}$ and $\psi_{fa,e}$).

2.3.2 Utility sector

Global approach

In Figure 4 the approach for the analysis of the utility sector is shown. There are three sources of energy losses, namely conversion, transmission and self-consumption. When considering exergy, losses only occur in the form of waste heat from the power plants off-gases. The average temperature of the flue-gases is taken as 150 °C [29] and is assumed constant, although it changes in practice with the fuel used in the combustion process. The waste heat discharged through the condenser of steam power plants is neglected as it is rejected at low to very low temperatures (between 30 and 100 °C).

Exergy is destroyed in the conversion of the fuels to electricity and district heat, the off-gases from the power plants, and with the transmission losses and self-consumption. The transmission losses of the district heating distribution pipes are assumed to be close to the dead state temperature, implying that very little exergy can be recovered.

In the case of electricity from wind energy, only the transmission losses are taken into account. The import and export of electric energy are not considered in this study.

For each utility system, the required fuel input for the generation of one unit electricity and district heat is found. The fuel allocation, in the case of combined heat and power production, is done based on the product distribution. The allocation of the exergy destruction and losses
to the final exergy products delivered to the industry follows the same reasoning, with a separation between the destruction and losses. The aim of the analysis of the utility sector is to find the embodied energy and exergy loss, as well as the exergy destruction, for electricity and district heat.

Electricity and district heat from the utility sector
For combined heat and power plants, the energy balance used is as follows:

\[\sum_i m_{f,i} (LHV)_i + W_{e,SC} = W_e + \dot{Q}_{DH} + \dot{Q}_t \]

(18)

The reformulation of the energy balance is done for the losses similar to the thermal processes within the industry. The exergy destruction within the power plant is found as the difference between the products and losses exergy content and the exergy into the system. By applying Eq.13 to the losses, the exergy content of them can be found.

Embodied energy and exergy efficiency
The embodied energy \(\eta_{pr,h}^{em} \) and exergy \(\psi_{pr,h}^{em} \) efficiencies account for the generation and transmission losses associated with the production of electricity and district heat. They are defined as the sum of exergy or heat contained in the product, divided by the sum of the direct energy or exergy input at the thermal site and the indirect input at the utility sector for the supply of district heat and power. The efficiencies can be expressed as follows:

\[\eta_{pr,h}^{em} = \frac{\sum_j \dot{Q}_{p,j}}{\sum_i m_{f,i} (LHV)_i + \sum_n m_{f,n} (LHV)_n} \]

(19)
\[
\psi_{pr,n}^{em} = \left(\frac{\sum_{j} \hat{E}_{j}^{O,n}}{\sum_{i} \dot{m}_{f,i} \varphi_{i} (LHV)_{i} + \sum_{n} \dot{m}_{f,n} \varphi_{n} (LHV)_{n}} \right)
\]
(20)

where:
- \(\dot{m}_{f,n} \) is the mass flowrate of the fuel \(n \) used to generate electricity and district heat for the processes;
- \(\varphi_{n} \) is the fuel to exergy ratio of the fuel \(n \);
- \((LHV)_{n} \) is the lower heating value of the fuel \(n \).

With the same approach, the efficiencies for the generation of work and heat in the facilities can be found.

3. Results

The results of the analysis are presented in the following. First, the industrial site analysis is shown, followed by the embodied analysis and the quantification of exergy losses. At the end, a comparison of the results with data from 2006 is performed.

Table 3. Total site energy consumption of the industries considered in 2012 and 2006 (TJ).

<table>
<thead>
<tr>
<th>No.</th>
<th>Industry</th>
<th>Process Heating</th>
<th>Machine Drive</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gravel and stone</td>
<td>2,847 3,819</td>
<td>326 283</td>
<td>43 88</td>
</tr>
<tr>
<td>2</td>
<td>Refined oil</td>
<td>16,789 17,142</td>
<td>1,020 742</td>
<td>66 46</td>
</tr>
<tr>
<td>3</td>
<td>Meat</td>
<td>1,855 1,762</td>
<td>1,094 1,646</td>
<td>904 892</td>
</tr>
<tr>
<td>4</td>
<td>Dairy products</td>
<td>3,394 3,332</td>
<td>1,298 1,001</td>
<td>776 595</td>
</tr>
<tr>
<td>5</td>
<td>Compound feed</td>
<td>1,158 1,460</td>
<td>658 839</td>
<td>221 288</td>
</tr>
<tr>
<td>6</td>
<td>Sugar</td>
<td>2,725 3,285</td>
<td>354 172</td>
<td>140 239</td>
</tr>
<tr>
<td>7</td>
<td>Other food products</td>
<td>2,403 3,530</td>
<td>999 1,355</td>
<td>444 693</td>
</tr>
<tr>
<td>8</td>
<td>Wood</td>
<td>2,706 2,082</td>
<td>585 962</td>
<td>718 1,060</td>
</tr>
<tr>
<td>9</td>
<td>Paper</td>
<td>1,770 2,183</td>
<td>559 986</td>
<td>284 373</td>
</tr>
<tr>
<td>10</td>
<td>Industrial Gasses</td>
<td>- -</td>
<td>399 447</td>
<td>60 69</td>
</tr>
<tr>
<td>11</td>
<td>Enzymes</td>
<td>1,026 1,191</td>
<td>875 1,028</td>
<td>195 292</td>
</tr>
<tr>
<td>12</td>
<td>Other chemicals</td>
<td>520 562</td>
<td>707 654</td>
<td>304 361</td>
</tr>
<tr>
<td>13</td>
<td>Pharmaceuticals</td>
<td>1,592 1,208</td>
<td>1,289 1,146</td>
<td>264 1,640</td>
</tr>
<tr>
<td>14</td>
<td>Plastic and rubber</td>
<td>897 1,737</td>
<td>965 1,189</td>
<td>913 1,770</td>
</tr>
<tr>
<td>15</td>
<td>Paint, soap etc.</td>
<td>3,065 734</td>
<td>1,006 807</td>
<td>353 930</td>
</tr>
<tr>
<td>16</td>
<td>Cement</td>
<td>9,116 14,734</td>
<td>1,038 1,703</td>
<td>52 85</td>
</tr>
<tr>
<td>17</td>
<td>Bricks</td>
<td>1,310 1,334</td>
<td>119 134</td>
<td>14 15</td>
</tr>
<tr>
<td>18</td>
<td>Asphalt</td>
<td>1,343 1,252</td>
<td>96 108</td>
<td>77 69</td>
</tr>
<tr>
<td>19</td>
<td>Rockwool</td>
<td>1,666 2,257</td>
<td>293 330</td>
<td>76 72</td>
</tr>
<tr>
<td>20</td>
<td>Concrete and bricks</td>
<td>2,273 1,956</td>
<td>275 309</td>
<td>270 281</td>
</tr>
<tr>
<td>21</td>
<td>Basic metals</td>
<td>2,187 2,807</td>
<td>386 728</td>
<td>421 780</td>
</tr>
<tr>
<td>22</td>
<td>Metal products</td>
<td>1,326 2,132</td>
<td>856 1,129</td>
<td>1,490 2,769</td>
</tr>
</tbody>
</table>
In Table 3, the total energy consumption of the industrial sectors is shown for the analysed years 2006 and 2012. The two industries with the greatest process heating demand are the oil refineries and the production of cement. Despite the general trend that for most industries the energy input decreased between 2006 and 2012, some sectors such as the wood industry have an increase. This is partly a result of production changes and of a different sectorial distribution by Statistics Denmark (i.e. sector 15). In total, the energy consumption was reduced by 16% between 2006 and 2012.

Site analysis of the industrial sector

The energy and exergy efficiencies for all thermal processes occurring in the industrial sectors in 2012 are shown in Figures 5 and 6, respectively. For heating processes in the facilities, high energy efficiencies are achieved, where industries using electric and district heat reach the highest ones. In exergy terms, the efficiency is the lowest for room heating because of the low product temperatures.

![Energy efficiencies for thermal heating in processes and facilities within the industry.](image)

Figure 5. Energy efficiencies for thermal heating in processes and facilities within the industry.

For the thermal use of energy within industrial processes, energy efficiencies above 70% are found for all sectors. Sectors with high-temperature operations and the direct use of fuels for processes, i.e. sectors within metal and building material production, have the lowest efficiencies. For those sectors, high exergy efficiencies are found, as the high temperature operations increase the exergy content in the products. Only sector 20 has a comparable low exergy efficiency, as it includes the production of concrete elements and gypsum plates, where thermal energy is required at lower temperatures. The overall exergy efficiencies range from 10 to 55% for thermal processes, excluding sector 10 (industrial gases), where no thermal processes occur in the production.

The comparison of the energy and exergy efficiencies for process heating shows that exergy can be more useful. The example of room heating suggests that the process is already close to its optimum, as very high energy efficiencies, between 85 and 100%, are retrieved. However, the very low exergy efficiency of room heating, below 10% for most industries, reveals that considerable improvement potentials exist. Higher exergy efficiencies can be achieved by using low exergy sources for low temperature heating processes. This could be for instance district heat or heat recovered from high temperature processes. With these measures not only the room heating, but also the processes can be designed more efficiently.
Embodied efficiency of the industrial sector
The exergetic efficiencies, including losses of district heat and electricity occurring at the central power stations and during transmission, are shown for the total thermal and electric use in Figure 7. A comparison of the total site and the total embodied exergy efficiency is done in Figure 8, where all heating and mechanical processes are included.

The embodied exergy efficiency for electric processes is nearly constant over all the sectors, as it is a direct function of the electric energy efficiency. However, the thermal exergy efficiency is decreased for several industries considerably. For the metal processing industries, which had the highest thermal site efficiencies, the embodied one is considerably reduced. Within the food and chemical industry, no considerable reductions are found as most of the thermal energy originates from natural gas and other fuels.
Figure 8 shows a comparison of the total site and total embodied exergy efficiency, taking into account all heating and electric processes. The production of industrial gases has the highest site efficiency but the embodied efficiency is only half, as this industry uses primarily electric energy. Similar differences in the efficiency are found for food and metal industry, where the production relies on electricity and district heat. In contrary, industries such as oil refinery, sugar, cement and brick production have only small differences in the site and embodied efficiency.

By using the embodied exergy efficiency and thereby extending the system boundaries, it is possible to account for all the losses occurring in the industry. The embodied exergy efficiency is an important indicator for a system analysis. Also on a site level, the embodied exergy can be used to determine the most optimal energy source for the production. For some industries, e.g. production of industrial gasses, the possible actions are limited as there is no alternative to the use of electricity in the processes.

Exergy loss and destruction

The analysis of exergy loss and destruction shows the recovery potentials in the industries. This is possible as the exergy content of the stream describes the maximal work which can be retrieved. Figure 9 presents the share of exergy loss and destruction of the total site exergy input for the thermal conversion in the industry. The production of building materials has the largest potential, with the exergy loss being up to 10% of the total thermal input. But also in the food, wood, paper and chemical industry potentials of above 5% are found.

In Figure 10 the exergy loss and embodied exergy loss for each industry is shown, for the thermal processes and machine drives. The industries with the highest energy input, also have the highest exergy loss on site. However industries with a high electric energy consumption, almost reach the same total embodied exergy loss, such as the production of meat and dairy products (sector 3 and 4).
In total, approximately 3,800 TJ of exergy are lost from thermal processes within the industry and an additional 200 TJ in the supply of room heating. The production of cement and the refinery of oil have together an accumulated exergy loss of 1,600 TJ from thermal processes. In these industries possibilities of more process integration and the export of heat should be considered, by implementing heat recovery systems.

For most industries, the majority of the exergy loss is embodied in the electricity use in machines. Only the production of metal and rubber (industry no. 14) has a considerable embodied exergy loss for thermal processes, due to the use of electricity for heating.
Figure 11. Exergy flows for process heating within the industrial sector in TJ (2012).
The overall exergy flows for thermal processes in the industry are shown in Figure 11 and confirm the previous findings. Only a small fraction of the total exergy destruction results from the utility sector. The majority of the lost exergy originates from the production of building material and oil. In total, an exergy loss for thermal processes of almost 5,000 TJ is found when including the embodied losses. The embodied losses can be reduced by increasing the share of wind energy and the production of district heat.

The exergy losses, as found in this section, describe the potential of exploiting the energy associated with the streams currently discharged into the environment. These losses can be reduced by further process integration and waste heat recovery. For example, the implementation of heat pumps and organic Rankine cycles would result in the conversion of low-temperature heat into district heating and electricity.

Comparison of 2006 and 2012

A comparison of the change in efficiency between 2006 and 2012 for the thermal industrial processes shows that the sectors had different developments. However, not all sectors are directly comparable between these years, because of changes in the allocation of industries. For the industries in meat, dairy product and sugar production a clear improvement in both exergy and energy efficiency can be found. Small improvements can be found for oil refinery, gravel and stone processing, paper and metal production. For these industries, the datasets are comparable and allow a direct comparison.

![Figure 12. Absolute change in the site energy, site exergy and embodied exergy efficiency for thermal use in the industry between 2006 and 2012.](image)

Considering the overall efficiencies for the Danish industry as a whole, a clear improvement can be found from the first law analysis for almost all efficiencies, as can be seen in Table 4. For the exergy analysis, the efficiency of the thermal processes has decreased, whereby the total exergy efficiency has increased slightly. This increase is a result of the improved use of electricity in the facilities, which has a strong weight on the result due to its high exergetic value.
<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Site Exergy</th>
<th>Embodied Exergy</th>
<th>Site Energy</th>
<th>Embodied Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Processes</td>
<td>31.2%</td>
<td>32.6%</td>
<td>29.3%</td>
<td>30.6%</td>
</tr>
<tr>
<td>Thermal Facility</td>
<td>3.6%</td>
<td>3.5%</td>
<td>2.7%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Electric Processes</td>
<td>81.4%</td>
<td>81.6%</td>
<td>34.0%</td>
<td>32.4%</td>
</tr>
<tr>
<td>Electric Facility</td>
<td>64.3%</td>
<td>60.3%</td>
<td>27.2%</td>
<td>23.9%</td>
</tr>
<tr>
<td>Total</td>
<td>39.7%</td>
<td>39.7%</td>
<td>29.6%</td>
<td>28.8%</td>
</tr>
</tbody>
</table>

4. Discussion

This sectorial analysis is subject to some uncertainties in the used data and applied method, which are discussed in the following. The distribution of the fuels amongst the categories is based on the Danish Energy Agency [14, 15], where detailed information of the energy consumptions of the main companies of each sector was used. Where no information was available, processes representing the sector and assumptions were undertaken. These distributions are representative for homogenous industry sectors, but for sectors such as (7.) other food products and (12.) other chemicals, assumptions and generalisations had to be made. The same applies for the process temperatures and their distribution. In particular, for the production of pharmaceutical products, enzymes and other chemicals, insufficient information was present to create a precise end-use model. The implications of the resulting uncertainties are small for the energy efficiencies, as the process temperatures in these industries are mainly below 125 °C, for which the direct heating efficiency was chosen to be between 85 and 100 %.

The exergy efficiency however, is related to the process temperature and changes with a varying fuel distribution amongst the process temperatures. For the most critical sectors, the temperatures are nevertheless in a similar range of 50 to 125 °C and do not include any high temperature processes.

The data of 2006 and 2012 is not directly comparable for all sectors and some assumptions had to be made. Danmark Statistik has reorganised the industry classification in 2008, and, as a result, some industries were allocated to new sectors. Furthermore, structural changes within in some sectors and different economic developments were not taken into account.

The production of combined heat and power within the industry is neglected in this study, as insufficient data is available. The calculation of the exergy losses is nonetheless not impacted by these limitations, as the basic data does not include the fuels for heat and power production on the industrial site.

For the embodied energy in electricity and district heat, the allocation of primary energy was based on the product distribution. As in the case of the first law analysis, the value of the products is identical, the embodied fuel consumption in the product is the same. For exergy, the allocation of the input to the utility sector was distributed based on the exergy content of the products. This results in a higher allocation of the input to the electricity production, than in the energy analysis. However, as more exergy is destroyed in the production of district heat, the specific exergy destruction per unit of exergy is higher for district heating.

The total process heating efficiency for the Danish industry is in the same range as for other countries, amongst others Iran [12], Saudi Arabia [26] and South Africa [30], where exergetic process heating efficiencies of around 30% were found. The energy efficiency for both process heating and the total site are however higher in this study, compared to values between 50% and 70% in the other studies. This is primarily a result of the higher direct process heating
efficiencies chosen in this study. The same applies on a sectorial level, where for comparable industries similar exergetic efficiencies are found but higher ones for energy.

5. Conclusion

This paper analyses the energy and exergy efficiency, as well as the destroyed and lost exergy, of 22 industrial sectors in Denmark for the years 2006 and 2012. By using the distribution of fuels and temperature levels for different processes within the sectors, a detailed end-use model for the thermal energy use for individual industries is created. The utility sector is included in a further approach to find the embodied exergy and energy flows, for electricity and district heat supplied to the industry.

The share of lost exergy found in the thermal processes within the industry suggests that there are large potentials for waste heat recovery. The lost exergy from the central production of heat and power is considerable higher than the losses on-site, as the use of electric energy for machines is included in the losses.

In 2012 for individual industries, the thermal process efficiencies range from 12 to 56%, where industries with high temperature processes such as cement and metal production achieve the highest efficiencies. The energy efficiency is between 63 and 90%, the less efficient industries are characterised by high-temperature processes, and the most efficient ones are namely the food, paper and chemical industry. On an industry level, the total exergy efficiency is approximately 40% with the embodied exergy being around 10% points lower. A comparison of the years 2006 and 2012 shows no remarkable improvements on an exergetic level, but the energy efficiency is considerably improved.

It is suggested that future actions towards energy efficiency measures in the industry, target the high temperature processes, where large quantities of energy are recoverable. Furthermore, the use of district heat and heat pumps for low temperature processes would improve the site efficiencies. Although the share of district heat and heat pumps has increased between 2006 and 2012, the improvement is not notable in the total efficiency. To reduce the embodied losses, continuous efforts should be made to avoid electric heating if the electricity originates from other sources than wind power.

Moreover, this paper gives a basis for future analyses of the industrial sectors, and the application of the method is described in details.

Future work in this area should be directed towards the improvements of the exergy models for machine drives, i.e. cooling, where also large quantities of surplus heat and thus exergy losses can be found.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>energy efficiency</td>
</tr>
<tr>
<td>(\mu)</td>
<td>chemical potential</td>
</tr>
<tr>
<td>(\phi)</td>
<td>exergy to fuel ratio</td>
</tr>
<tr>
<td>(\psi)</td>
<td>exergy efficiency</td>
</tr>
<tr>
<td>(\dot{E})</td>
<td>exergy rate</td>
</tr>
<tr>
<td>(e)</td>
<td>specific exergy</td>
</tr>
<tr>
<td>(\dot{H})</td>
<td>energy of stream of matter</td>
</tr>
<tr>
<td>(h)</td>
<td>specific enthalpy</td>
</tr>
<tr>
<td>LHV</td>
<td>lower heating value</td>
</tr>
<tr>
<td>(\dot{m})</td>
<td>mass flow rate</td>
</tr>
<tr>
<td>(\dot{Q})</td>
<td>heat rate</td>
</tr>
<tr>
<td>(s)</td>
<td>specific entropy</td>
</tr>
<tr>
<td>(T)</td>
<td>temperature</td>
</tr>
<tr>
<td>(\dot{W})</td>
<td>work rate</td>
</tr>
<tr>
<td>(x)</td>
<td>mass fraction</td>
</tr>
</tbody>
</table>
Subscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>destroyed</td>
</tr>
<tr>
<td>e</td>
<td>electric</td>
</tr>
<tr>
<td>f</td>
<td>fuel</td>
</tr>
<tr>
<td>fa</td>
<td>facility</td>
</tr>
<tr>
<td>h</td>
<td>heating</td>
</tr>
<tr>
<td>k</td>
<td>surroundings</td>
</tr>
<tr>
<td>L</td>
<td>loss</td>
</tr>
<tr>
<td>i</td>
<td>fuel i</td>
</tr>
<tr>
<td>in</td>
<td>inflowing</td>
</tr>
<tr>
<td>j</td>
<td>process j</td>
</tr>
<tr>
<td>n</td>
<td>fuel n</td>
</tr>
<tr>
<td>out</td>
<td>outflowing</td>
</tr>
<tr>
<td>p</td>
<td>product</td>
</tr>
<tr>
<td>pr</td>
<td>process</td>
</tr>
<tr>
<td>SC</td>
<td>self-consumption</td>
</tr>
<tr>
<td>DH</td>
<td>district heating</td>
</tr>
<tr>
<td>W</td>
<td>waste heat</td>
</tr>
<tr>
<td>0</td>
<td>environmental state</td>
</tr>
<tr>
<td>00</td>
<td>dead state</td>
</tr>
</tbody>
</table>

Superscripts

<table>
<thead>
<tr>
<th>Superscript</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>chemical</td>
</tr>
<tr>
<td>em</td>
<td>embodied</td>
</tr>
<tr>
<td>W</td>
<td>work</td>
</tr>
<tr>
<td>Q</td>
<td>heat</td>
</tr>
</tbody>
</table>

REFERENCES

13. Statistics Denmark. ENE2HA: Energy Account in common units (detailed table) by use and type of energy – Available at: <http://www.statistikbanken.dk/ENE2HA>. [accessed 24.03.2015]

22. Graz University of Technology. Matrix for Industrial Process Indicators – Available at: <http://wiki.zero-emissions.at/>. [accessed 24.03.105]

