The colpitts oscillator family

Lindberg, Erik; Murali, K.; Tamasevicius, A.

Publication date: 2008

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
THE COLPITTS OSCILLATOR FAMILY

E. Lindberg¹, K. Murali² and A. Tamasevicius³

¹Elektro DTU, 348 Technical University of Denmark, DK2800 Kongens Lyngby, Denmark
E-mail: el@elektro.dtu.dk
²Department of Physics, Anna University, Chennai-600 025, India
³Plasma Phenomena and Chaos Laboratory, Semiconductor Physics Institute,
A. Gostauto 11, Vilnius, LT-01108, Lithuania

Abstract

A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three-terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based on single transistors or operational amplifiers are studied.

Introduction

An electronic oscillator is a nonlinear circuit with at least two memory components (charge, flux or hysteresis based). When excited with a dc source an oscillator responds with a steady state signal which may be chaotic of nature in case of more than two memory components. The Colpitts oscillator is one of the most used oscillators especially for high frequencies. The aim of this tutorial is to study Colpitts oscillators defined as any oscillator made from a nonlinear amplifier and a three-terminal linear resonance circuit with one coil and two capacitors called the Colpitts resonator.

Electronic oscillators may be classified in families according to the kind and number of memory elements used e.g. the common multi-vibrator family with one capacitor or one coil in connection with a nonlinear amplifier [1], the Wien Bridge family where one RC-series and one RC-parallel circuit occur [2], the negative resistance family where one simple LC resonance circuit occur [3], the Colpitts family where a resonance circuit with two capacitors and one coil occur or the Hartley family where a resonance circuit with two coils and one capacitor occur.

Many years ago when the words "oscillator" and "electronics" were not invented in connection with electrical circuits and systems an "Oscillation Generator" was invented by Edwin Henry Colpitts (1872-1949) possibly sometime in the period 1915-1918. Colpitts oscillator topology based on two capacitors and one coil is the electrical dual of Hartleys oscillator topology based on two coils and one capacitor. Colpitts patents are investigated. This tutorial is divided into three sections. First general comments on amplifiers and oscillators, then transistor based Colpitts oscillators and finally Colpitts oscillators based on operational amplifiers are investigated.

Amplifiers and Oscillators

There are four types of amplifiers or controlled sources - Voltage Controlled Voltage Source VCVS, Voltage Controlled Current Source VCCS, Current Controlled Voltage Source CCVS and Current Controlled Current Source CCCS. Amplifiers are characterized by a stable time invariant dc bias point which may be used as signal reference. For small signals we have a linear relation between output and input. For large signals we may observe distortion of the signals.

A general amplifier circuit with four impedances is investigated. Two impedances are used for positive- and two impedances are used for negative- feed-back. If we introduce memory elements - capacitors, coils, hysteresis - in the four impedances various types of oscillators may be obtained. With three resistors and one capacitor or one coil four different common multi-vibrator topologies may be obtained [1].

Normally you distinguish between sinusoidal and relaxation oscillators but this is not a proper division because the same topology may give rise to both kinds of oscillations at different frequencies [1]. Oscillators are circuits which for constant input signal (dc battery) produce an oscillating output signal (a steady state time varying signal). Oscillators do not have a stable time invariant dc bias point which can be used as signal reference but some times an average bias point is introduced. There are three basic types of oscillators. The first type has an unstable initial dc bias point. This
type is self-starting when the power supply is connected. The eigenvalues of the linearized Jacobian of the differential equations - the poles - are moving between the right half (RHP) and the left half (LHP) of the complex frequency plane so that a balance is obtained between the energy obtained from the power supply when the poles are in RHP and the energy lost when the poles are in LHP. The second type has a stable initial dc bias point. This type needs some extra initial energy in order to start up. The poles are in LHP all the time and some special impulse mechanism is needed to provide energy from the power supply in the steady state. The third type is a combination of the two types. It is unstable in the initial dc bias point and the poles are moving around in LHP only in the steady state [4,5].

The frequency of the oscillator is primarily determined by the imaginary part of the complex pole pair (eigenvalue) of the linear resonance circuit involved. The amplitude of the oscillator is primarily determined by the real part of the complex pole pair. If the oscillator is a second order circuit with two linear memory components and a nonlinear amplifier it is impossible to obtain an almost constant frequency corresponding to balancing on the razors edge with the complex pole on the imaginary axis. If the oscillator is a third order circuit with three linear memory components then you may have an extra real pole in connection with the complex pole pair to operate with corresponding to the balancing pole of the tight-rope walker.

Colpitts Oscillators based on Transistors

It is difficult to obtain a complete systematic description of all the possible topologies of the Colpitts oscillator family because it is a third order system. The Colpitts resonator is normally introduced as a triangle circuit but a star circuit with a coil and two capacitors may also be used [6]. Colpitts oscillators based on a single transistor as amplifier in common emitter-, base- or collector-mode are compared.

Experiments with PSpice simulations are presented. A 100kHz Colpitts resonator is designed. Losses are introduced as a resistor in series with the coil because it is impossible in practice to neglect the coil losses. The two capacitors are of different size because it is difficult in practice to obtain exact same value.

The 3 terminals of the transistor may be combined with the 3 terminals of the Colpitts resonator in many ways e.g. by rotating the components of the resonator. A total of 18 topologies have been investigated. It was found that 6 of these gave rise to steady state oscillations. PSpice models for transistors 2N2222 and 2N3904 were used. If a simple Ebers-Moll transport-model with no feed-back for the transistor is introduced only one nonlinearity occur (diode) and the trajectories of the poles in the complex frequency plane may easily be found. A complex pole pair is moving between RHP and LHP and a real pole is moving on the negative real axis. The imaginary part of the complex pole pair is almost constant giving rise to very little phase noise.

Colpitts Oscillators based on Operational Amplifiers

As stated above there are four types of controlled sources - VCVS, VCCS, CCVS and CCCS - but here only Colpitts oscillators based on a perfect piecewise linear voltage controlled voltage source VCVS - operational amplifier - are investigated. A total of 18 topologies have been investigated. It was found that 7 of these gave rise to steady state oscillations. PSpice models for operational amplifiers uA741 (LF) and TL082 (HF) were used. In six of the topologies the Colpitts resonator was coupled between the two input terminals of the op amp and the reference terminal.

Conclusion

The Colpitts oscillator family is investigated. New oscillator topologies with memory components in both positive and negative feed-back path of a perfect operational amplifier are presented. The complex frequency plane trajectories of the eigenvalues of the linearized Jacobian of the differential equations modeling topologies with only one nonlinearity are studied in order to obtain knowledge about the mechanism behind the oscillations [5]. A real pole is moving in the left half plane and a complex pole pair is moving between the right and the left half plane so that energy balance is obtained.

References

4. Erik Lindberg, “Oscillators - an approach for a better understanding”, (tutorial presented at ECCTD03 - http://ecctd03.zet.agh.edu.pl/), erik.lindberg@ieee.org
International Symposium
TOPICAL PROBLEMS
OF NONLINEAR WAVE PHYSICS

NWP-1
NONLINEAR DYNAMICS
OF ELECTRONIC SYSTEMS
NDES'2008
16-TH INTERNATIONAL WORKSHOP

PROCEEDINGS

Nizhny Novgorod, 2008
Chair

Vladimir Nekorkin
Institute of Applied Physics RAS, Russia

Program Committee

Leon Chua, University of California at Berkley, USA
Anthony Davies, King's College, University of London, UK
Alexander Dmitriev, Institute of Radioengineering and Electronics RAS, Russia
Martin Hasler, Swiss Federal Institute of Technology, Switzerland
Peter Kennedy, University College Dublin, Ireland
Erik Lindberg, Technical University of Denmark, Denmark
Vladimir Nekorkin, Institute of Applied Physics RAS, Russia
Maciej Ogorzalek, University of Mining & Metallurgy, Poland
Angel Rodriguez-Vázquez, University of Seville, Spain
Wolfgang Schwarz, Technical University of Dresden, Germany
Vladimir Shalfeev, University of Nizhny Novgorod, Russia

Symposium Web site:
www.nwp.sci-nnov.ru
THE COLPITTS OSCILLATOR FAMILY

E. Lindberg¹, K. Murali², and A. Tamasevicius³

¹Elektro DTU, 348 Technical University of Denmark, DK2800 Kongens Lyngby, Denmark,
E-mail: el@elektro.dtu.dk
²Department of Physics, Anna University, Chennai-600 025, India
³Plasma Phenomena and Chaos Laboratory, Semiconductor Physics Institute,
A. Gostauto 11, Vilnius, LT-01108, Lithuania

Abstract

A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three-terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated.

Introduction

An electronic oscillator is a nonlinear circuit with at least two memory components (charge, flux or hysteresis based). When excited with a dc source an oscillator responds with a steady state signal which may be chaotic of nature in case of more than two memory components. The Colpitts oscillator is one of the most used oscillators especially for high frequencies. The aim of this tutorial is to study Colpitts oscillators defined as any oscillator made from a nonlinear amplifier and a three-terminal linear resonance circuit with one coil and two capacitors called the Colpitts resonator.

Electronic oscillators may be classified in families according to the kind and number of memory elements used, e.g. the common multi-vibrator family with one capacitor or one coil in connection with a nonlinear amplifier [1], the Wien Bridge family where one RC-series and one RC-parallel circuit occur [2], the negative resistance family where one simple LC resonance circuit occur [3], the Colpitts family where a resonance circuit with two capacitors and one coil occur or the Hartley family where a resonance circuit with two coils and one capacitor occur.

Many years ago when the words "oscillator" and "electronics" were not invented in connection with electrical circuits and systems an "Oscillation Generator" was invented by Edwin Henry Colpitts (1872–1949) possibly sometime in the period 1915–1918. Colpitts oscillator topology based on two capacitors and one coil is the electrical dual of Hartleys oscillator topology based on two coils and one capacitor. Colpitts patents are investigated. This tutorial is divided into three sections. First general comments on amplifiers and oscillators, then transistor based Colpitts oscillators and finally Colpitts oscillators based on operational amplifiers are investigated.

Amplifiers and Oscillators

There are four types of amplifiers or controlled sources – Voltage Controlled Voltage Source VCVS, Voltage Controlled Current Source VCCS, Current Controlled Voltage Source CCVS and Current Controlled Current Source CCCS. Amplifiers are characterized by a stable time invariant dc bias point which may be used as signal reference. For small signals we have a linear relation between output and input. For large signals we may observe distortion of the signals.

A general amplifier circuit with four impedances is investigated. Two impedances are used for positive and two impedances are used for negative feed-back. If we introduce memory elements – capacitors, coils, hysteresis – in the four impedances various types of oscillators may be obtained. With three resistors and one capacitor or one coil four different common multi-vibrator topologies may be obtained [1].

Normally you distinguish between sinusoidal and relaxation oscillators but this is not a proper division because the same topology may give rise to both kinds of oscillations at different frequencies [1]. Oscillators are circuits which for constant input signal (dc battery) produce an oscillating output signal (a steady state time varying signal). Oscillators do not have a stable time invariant dc bias point which can be used as signal reference but some times an average bias point is introduced. There are three basic types of oscillators. The first type has an unstable initial dc bias point. This type is self-starting when the power supply is connected. The eigenvalues of the linearized Jacobian of the differential equations – the poles – are moving between the right half (RHP) and the left half (LHP) of the complex frequency plane so that a balance is obtained between the energy obtained from the power supply when the poles are in RHP and the energy lost when the poles are in LHP. The second type has a stable initial dc bias point. This type needs some extra initial energy in order to start up. The poles are in LHP all the time and some special
impulse mechanism is needed to provide energy from the power supply in the steady state. The third type is a combination of the two types. It is unstable in the initial dc bias point and the poles are moving around in LHP only in the steady state [4, 5].

The frequency of the oscillator is primarily determined by the imaginary part of the complex pole pair (eigenvalue) of the linear resonance circuit involved. The amplitude of the oscillator is primarily determined by the real part of the complex pole pair. If the oscillator is a second order circuit with two linear memory components and a nonlinear amplifier it is impossible to obtain an almost constant frequency corresponding to balancing on the razor's edge with the complex pole on the imaginary axis. If the oscillator is a third order circuit with three linear memory components then you may have an extra real pole in connection with the complex pole pair to operate with corresponding to the balancing pole of the tight-ropes walker.

Colpitts Oscillators based on Transistors

It is difficult to obtain a complete systematic description of all the possible topologies of the Colpitts oscillator family because it is a third order system. The Colpitts resonator is normally introduced as a triangle circuit but a star circuit with a coil and two capacitors may also be used [6]. Colpitts oscillators based on a single transistor as amplifier in common emitter-, base- or collector-mode are compared.

Experiments with PSpice simulations are presented. A 100 kHz Colpitts resonator is designed. Losses are introduced as a resistor in series with the coil because it is impossible in practice to neglect the coil losses. The two capacitors are of different size because it is difficult in practice to obtain exact same value.

The 3 terminals of the transistor may be combined with the 3 terminals of the Colpitts resonator in many ways e.g. by rotating the components of the resonator. A total of 18 topologies have been investigated. It was found that 6 of these gave rise to steady state oscillations. PSpice models for transistors 2N2222 and 2N3904 were used. If a simple Ebers-Moll transport-model with no feedback for the transistor is introduced, only one nonlinearity occurs (diode) and the trajectories of the poles in the complex frequency plane may easily be found. A complex pole pair is moving between RHP and LHP and a real pole is moving on the negative real axis. The imaginary part of the complex pole pair is almost constant giving rise to very little phase noise.

Colpitts Oscillators based on Operational Amplifiers

As stated above there are four types of controlled sources – VCVS, VCCS, CCVS and CCCS – but here only Colpitts oscillators based on a perfect piecewise linear voltage controlled voltage source VCVS – operational amplifier – are investigated. A total of 18 topologies have been investigated. It was found that 7 of these gave rise to steady state oscillations. PSpice models for operational amplifiers uA741 (LF) and TL082 (HF) were used. In six of the topologies the Colpitts resonator was coupled between the two input terminals of the op amp and the reference terminal.

Conclusion

The Colpitts oscillator family is investigated. New oscillator topologies with memory components in both positive and negative feedback paths of a perfect operational amplifier are presented. The complex frequency plane trajectories of the eigenvalues of the linearized Jacobian of the differential equations modeling topologies with only one nonlinearity are studied in order to obtain knowledge about the mechanism behind the oscillations [5]. A real pole is moving in the left half plane and a complex pole pair is moving between the right and the left half plane so that energy balance is obtained.

References

4. E. Lindberg, "Oscillators – an approach for a better understanding", (tutorial presented at ECTD03 – http://ectd03.zet.agh.edu.pl/), erik.lindberg@iee.org
1 Colpitts Oscillator Family
2 Amplifiers and Oscillators
3 Colpitts Oscillators based on Transistors
4 Colpitts Oscillators based on Amplifiers
5 Conclusion
A tutorial study of

the Colpitts oscillator family

defined as

all oscillators based on
a nonlinear amplifier

and

a three-terminal
linear resonance circuit
with one coil and two capacitors
Rhea, R., "A new class of oscillators",
IEEE Microwave Magazine, Vol.5 Issue.2, pp 72-83, 2004
The Colpitts Oscillator Family

Many years ago when the words "oscillator" and "electronics" were not invented in connection with electrical circuits and systems an "Oscillation Generator" was invented by Edwin Henry Colpitts (1872-1949) possibly sometime in the period 1915-1918
It is known that a vacuum tube of the audion type may be employed as a generator of oscillations of any desired frequency by providing a tuned circuit suitably associated with the tube circuits, usually called input oscillations of any frequency, depending upon the values of inductance and capacity in the oscillating circuit. The operation of the system may be explained as follows:
Oscillation Generator.

Application filed February 1, 1918. Serial No. 214,971.

It is known that a vacuum tube of the audion type may be employed as a generator of oscillations of any desired frequency by providing a tuned circuit suitably associated with the tube circuits, usually called input and output circuits. In previous generators the coupling between the input and output circuits has been electro-magnetic. In accordance with this invention, the couplings between the input circuit and the oscillation circuit and between the output circuit and the oscillation circuit are made electro-static. Some of the advantages of this arrangement are herein enumerated. One advantage of this form of generator is that the generation of oscillations of a frequency not determined by the period of the tuned circuit is prevented. Another advantage is that it enables the generator to be connected to an antenna in a transmitting system without causing any part of the generator to be short-circuited. This and other novel advantages will be most readily understood by reference to the following detailed description taken in connection with the accompanying drawings, in which Fig. 1 represents one form of the generator of this invention; Fig. 2 is a modification of Fig. 1; and Fig. 3 illustrates how the generator may be associated with a transmitting antenna.

Referring to Fig. 1, 6 is an evacuated vessel of the audion type containing a filament 7, an anode 8, and a grid or imm.

Oscillations of any frequency, depending upon the values of inductance and capacity in the oscillating circuit.

The operation of the system may be explained as follows:

Assume that a slight disturbance is impressed upon the grid 9. Corresponding changes but of greater amplitude will then occur in the output circuit current from the source of voltage 11. Due to the mutual capacity reactance 13 between the output circuit and the oscillating circuit, these current changes in the output circuit will set up oscillations in the oscillating circuit of a period determined by the amount of inductance and capacity in the circuit. The current in the oscillating circuit will create an alternating current voltage drop across the terminals of the condenser 16, and since this condenser is common to both the input circuit and the oscillating circuit, the alternating voltage will be impressed between the grid 9 and the filament 7. This voltage will then cause corresponding current variations in the output circuit as explained above, so that the cycle of operations will be repeated and the tube will be caused to generate oscillations of constant amplitude and of a frequency determined by the tuning of the oscillating circuit. These oscillations may be impressed in any suitable manner, as by a transformer 22, upon a work circuit 88, whereby the oscillations may be em.
The Colpitts Oscillator Family

The drawings of Colpitts's US patent (filed 1918, issued 1927), 1,624,537, and his Canadian patent (filed 1919, issued 1920) are identical.
Fig. 1.

Fig. 2.

3 = 4
Oscillation Generator

Colpitts's
Canadian Patent
filed 1919
issued 1920
The Colpitts Oscillator Family

Colpitt's oscillator topology based on two capacitors and one coil is the electrical dual of Hartley's oscillator topology based on two coils and one capacitor.

Hartley's patent was filed 1915 and issued 1920.
The Colpitts Oscillator Family

R. V. L. HARTLEY.

OSCILLATION GENERATOR.
APPLICATION FILED JUNE 1, 1915.

The Colpitts Oscillator Family

It is interesting to observe that the topology with "a stopping condenser of large capacity (21)" in series with the coil (20) "to prevent the flow of direct current" - now known as the Clapp oscillator - is included.
Clapp !

3 = 4
FIG. 1. THE ADVANTAGES OF A COLPITTS CIRCUIT EXPLAINED

Each tube capacity is shunted by a condenser which must be large for best results. In the set here described C2 and C3 each have a fixed capacity of 400 μf and C1 has a maximum capacity of 250 μf. Thus the capacity across the coil may be as large as 650 μf. It is never made less than 420 μf. This should be compared with ordinary amateur practice.

Frozen Eigenvalues Approach

the circuit is linearized at a certain moment and the placements in the complex frequency plane of the eigenvalues of the Jacobian are found

pole trajectories in LHP and RHP

Colpitts 3'rd order i.e.

3 real poles or
1 real pole and 1 complex pole pair
1. Colpitts Oscillator Family
2. Amplifiers and Oscillators
3. Colpitts Oscillators based on Transistors
4. Colpitts Oscillators based on Amplifiers
5. Conclusion
There are four types of amplifiers or controlled sources: VCVS, VCCS, CCVS, CCCS.

Stable time invariant dc bias point signal reference

Small signals: linear transfer

Large signals: nonlinear transfer distortion
VCVS

Amplifier with positive and negative feedback
Perfect amplifier:

\[Z_{in} = \infty \quad Z_{out} = 0 \quad V_3 = A \times (V_1 - V_2) \]
$A = \infty \quad RA_{\text{load}} = - \frac{RB \times RD}{RC}$

$A = 0 \quad RA_{\text{load}} = + RB$

Negative Resistance
$$RA_{\text{load}} = 0 \quad \text{for} \quad A = - \left(1 + \frac{RC}{RD} \right)$$

$$RA_{\text{load}} = \infty \quad \text{for} \quad A = + \left(1 + \frac{RD}{RC} \right)$$
Oscillators are nonlinear circuits.

The **Barkhausen criteria** will only give you a starting point as a "linear oscillator" with a complex pole pair on the imaginary axis not sufficient for **steady state oscillations**.

In most cases you are lucky and your circuit will oscillate for some reason.
Oscillators are nonlinear circuits.

The Barkhausen Stability Criterion is simple, intuitive, and wrong ;-).
Barkhausen criteria

Vimal Singh,
"A note on determination of oscillation startup condition",
Analog Integr. Circ. Sig. Process (Springer 2006),
vol.48, pp.251–255

Abstract: There prevails a widespread notion that, given a closed-loop system, oscillation will commence and build up therein if the magnitude of loop gain is greater than unity at the frequency at which the angle of loop gain is zero degree. Three novel examples in which this notion fails are presented.
Barkhausen criteria

Vimal Singh,
"Failure of Barkhausen oscillation building up criterion: Further evidence",

Abstract: It has been suggested in many textbooks that, given a closed-loop system, oscillation will commence and build up therein if the magnitude of loop gain is greater than unity at the frequency at which the angle of loop gain is zero degree. A novel ideal op-amp based counterexample to this suggestion is presented. The Letter serves to substantiate the findings in a recent Letter. A discussion relating to the finite gain of op-amp is included.
Oscillators are nonlinear circuits.

relaxation versus sinusoidal ;-(

A certain topology may act as a relaxation oscillator at low/high frequencies and as a sinusoidal oscillator at high/low frequencies.
Oscillators are nonlinear circuits.

Three basic types of oscillators

1. Unstable initial dc bias point
 Eigenvalues of the linearized Jacobian moving between RHP and LHP

2. Stable initial dc bias point
 Needs some extra initial energy
 The poles are in LHP all the time
 Special impulse mechanism is needed

3. Combination of 1 and 2
 Poles are moving around in LHP only
1 Colpitts Oscillator Family
2 Amplifiers and Oscillators
3 Colpitts Oscillators based on Transistors
4 Colpitts Oscillators based on Amplifiers
5 Conclusion
.subckt colpitts 1 2 3
 * colpitts resonator
 RL0 1 4 50
 L0 4 2 1e-3
 C1 1 3 4.812756223e-09
 C2 2 3 5.347506914e-09
.ends

100kHz
<table>
<thead>
<tr>
<th>Case:</th>
<th>CE</th>
<th>CB</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>QNPN</td>
<td>e c b</td>
<td>b e c</td>
<td>c b e</td>
</tr>
<tr>
<td></td>
<td>1 2 3</td>
<td>1 2 3</td>
<td>1 2 3</td>
</tr>
<tr>
<td></td>
<td>2 3 1</td>
<td>2 3 1</td>
<td>2 3 1</td>
</tr>
<tr>
<td></td>
<td>3 1 2</td>
<td>3 1 2</td>
<td>3 1 2</td>
</tr>
<tr>
<td></td>
<td>1 3 2</td>
<td>1 3 2</td>
<td>1 3 2</td>
</tr>
<tr>
<td></td>
<td>3 2 1</td>
<td>3 2 1</td>
<td>3 2 1</td>
</tr>
<tr>
<td></td>
<td>2 1 3</td>
<td>2 1 3</td>
<td>2 1 3</td>
</tr>
</tbody>
</table>

18 patterns

6 ss osc
RC = 20kOhm
VE = +1V
VC = +4V
2N2222
2N3904
CE

RL0
L0
C1
C2
RE = 20kOhm
VE = +4V
VC = +1V
2N2222
2N3904
CB
Ebers-Moll Injection Model

Ebers-Moll Transport Model
Ebers-Moll Injection Model

AF = 0.9976
BF = 415.67

AF = \frac{BF}{BF + 1}
BF = \frac{AF}{1 - AF}

Forward + AF * I_E

V_{BE} \quad \quad \quad R_E

V_{CE} \quad \quad \quad E

I_C \quad \quad \quad C

I_E \quad \quad \quad B

I_B
Ebers-Moll Transport Model

$BF = 415.67$

$AF = 0.9976$

$BF = \frac{AF}{1 - AF}$

$AF = \frac{BF}{BF + 1}$

$BF \cdot IB$

VC_{CE}

I_C

I_E

I_B

V_{BE}

RE
Frozen eigenvalue approach

Eigenvalues of linearized Jacobian of differential equations

Only one non-linearity: Base-Emitter Diode

Dynamic resistance R_d

Trajectories of poles in the complex frequency plane
real pole

Colpitts oscillator

j * omega

complex pole-pair

complex pole-pair trajectory

sigma

CB
real pole Colpitts oscillator

j * omega complex pole-pair

complex pole-pair trajectory sigma
CE Colpitts Oscillator

<table>
<thead>
<tr>
<th>Status</th>
<th>Rd</th>
<th>sigma</th>
<th>j*omega</th>
<th>real-p</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>1e+12</td>
<td>-0.03M</td>
<td>0.63M</td>
<td>-4.92k</td>
</tr>
<tr>
<td>dc bias</td>
<td>51k</td>
<td>+0.22M</td>
<td>0.75M</td>
<td>-0.50M</td>
</tr>
<tr>
<td>ON</td>
<td>2.5k</td>
<td>+0.84M</td>
<td>1.65M</td>
<td>-1.81M</td>
</tr>
</tbody>
</table>

Frozen eigenvalues as function of dynamic resistance Rd of base-emitter diode
Colpitts oscillator

Diode ON

dc bias-point

Rd = 51k

(0.22M + j * 0.75M)

Rd = 40.9

(2.25M + j * 6.06M)

Diode OFF

CE

complex pole-pair trajectory
Figure 7: x-axis: real part, y-axis: positive imaginary part of complex pole pair.
First order limit cycle case.

Figure 8: x-axis: real part, y-axis: positive imaginary part of complex pole pair.
Chaotic "limit cycle" case.

Erik Lindberg,
"Colpitts, Eigenvalues and Chaos"
Proceedings 5'th International Specialist Workshop,
Nonlinear Dynamics of Electronic Systems,
Figure 1: Colpitts oscillator.
Colpitts Oscillator

I(Xresonator.RL0)

V(2)

V(1)

Time

CE FFT

time: 0.5ms - 10.0ms
Colpitts Oscillator

I(Xresonator.RL0)

V(2)

V(1)

Frequency

time: 0.5ms - 10.0ms
1. Colpitts Oscillator Family
2. Amplifiers and Oscillators
3. Colpitts Oscillators based on Transistors
4. Colpitts Oscillators based on Amplifiers
5. Conclusion
<table>
<thead>
<tr>
<th>Case:</th>
<th>AMP</th>
<th>VCVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1 3 0</td>
<td>1 2 3</td>
</tr>
<tr>
<td>C</td>
<td>2 3 0</td>
<td>2 3 1</td>
</tr>
<tr>
<td>E</td>
<td>2 1 0</td>
<td>3 1 2</td>
</tr>
<tr>
<td></td>
<td>1 3 2</td>
<td>1 3 2</td>
</tr>
<tr>
<td></td>
<td>3 2 1</td>
<td>3 2 1</td>
</tr>
<tr>
<td></td>
<td>2 1 3</td>
<td>2 1 3</td>
</tr>
</tbody>
</table>

18 patterns

Case B2

Case E6

7 ss osc
* case B 1 2 3
* XCLP 1 3 0 colpitts ; no osc
* XCLP 0 1 3 colpitts ; ss osc
* XCLP 3 0 1 colpitts ; no osc

* XCLP 1 0 3 colpitts ; ss osc
* XCLP 0 3 1 colpitts ; no osc
* XCLP 3 1 0 colpitts ; damp osc

* RA 1 0 800
* RB 1 3 800
RC 2 3 800
RD 2 0 800

![Diagram of electrical circuit](image)
XOPAMP: TL082

Case B2
Case E6

* case E 1 2 3
* XCLP 2 1 0 colpitts ; conv. problems
* XCLP 0 2 1 colpitts ; no osc
* XCLP 1 0 2 colpitts ; ss osc

* XCLP 2 0 1 colpitts ; no osc
* XCLP 0 1 2 colpitts ; ss osc
* XCLP 1 2 0 colpitts ; ss osc

* RA 1 0 800
* RB 1 3 800
* RC 2 3 800
* RD 2 0 800
XOPAMP: uA741

Case E6
XOPAMP: TL082

Case E6
Case E6

ua741

TL082
dynamic transfer-characteristics of operational amplifiers

slope: $V_3 = A \times (V_1 + V_2)$
Case E6 complex pole-pair trajectory
Case E6 complex pole-pair trajectory
<table>
<thead>
<tr>
<th>Gain A</th>
<th>Poles</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(-0.230e+6)</td>
<td>(-17.7e+3)</td>
<td>0.00e-01</td>
<td></td>
</tr>
<tr>
<td>+46</td>
<td>(0.589e+6)</td>
<td>0.126e+6</td>
<td>(-13.5e+3)</td>
<td></td>
</tr>
<tr>
<td>-46</td>
<td>(-1.65e+6)</td>
<td>(-19.7e+3)</td>
<td>± j 14.8e+3</td>
<td></td>
</tr>
<tr>
<td>+182</td>
<td>(4.22e+6)</td>
<td>24.5e+3</td>
<td>(-9.67e+3)</td>
<td></td>
</tr>
<tr>
<td>-182</td>
<td>(-5.21e+6)</td>
<td>(-6.44e+3)</td>
<td>± j 12.3e+3</td>
<td></td>
</tr>
<tr>
<td>+1e+9</td>
<td>(26.0e+12)</td>
<td>(-0.500e+3)</td>
<td>0.00e-01</td>
<td></td>
</tr>
<tr>
<td>-1e+9</td>
<td>(-26.0e+12)</td>
<td>(-0.500e+3)</td>
<td>0.00e-01</td>
<td></td>
</tr>
<tr>
<td>1.0E+12</td>
<td>(-0.500e+3)</td>
<td>0.00e-01</td>
<td>0.00e-01</td>
<td></td>
</tr>
</tbody>
</table>
1 Colpitts Oscillator Family
2 Amplifiers and Oscillators
3 Colpitts Oscillators based on Transistors
4 Colpitts Oscillators based on Amplifiers
5 Conclusion
Conclusion

- The Colpitts oscillator family is investigated.

- New oscillator topologies with memory components in both positive and negative feed-back path of a perfect operational amplifier are presented.

- The complex frequency plane trajectories of the eigenvalues of the linearized Jacobian of the differential equations modeling topologies with only one nonlinearity are studied in order to obtain knowledge about the mechanism behind the oscillations.

- A real pole is moving in the left half plane and a complex pole pair is moving between the right and the left half plane so that energy balance is obtained.
XOPAMP 1 2 31 32 3 uA741
XOPAMP 1 2 31 32 3 TL082

VP 31 0 dc +10
VN 32 0 dc -10

----- Passive RLC elements

GOP 1 2 1 2 0.000000000000000E-01
RL0 5 4 5.000000000000000E+01
L0 4 0 1.000000000000000E-01
C1 1 5 4.812756223000000E-09
C2 2 5 5.347506914000000E-09
RB 1 3 8.000000000000000E+02
RC 2 3 8.000000000000000E+02
RA 1 0 800
RD 2 0 800
Thank you for your attention