Investigations on PVD Al/Ni electrocatalysts for alkaline water electrolysis

Kjartansdóttir, Cecília Kristín; Caspersen, Michael; Egelund, Sune Daaskov; Møller, Per

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
1. Introduction

1.1 Alternative electrodes for alkaline electrolysis
- Manufacturing of low-cost and efficient electrodes for alkaline electrolysis, plays a crucial role in promotion of this technique as a suitable route for renewable energy storage.

1.2 Characterization of HER and OER properties
- A new method for manufacturing of Raney type electrodes were investigated and the electrodes were characterized using conventional electrochemical techniques.

2. Experimental and procedures

2.1 Manufacturing of electrodes
- Deposition of AI by physical vapour deposition onto Ni
- Diffusion of AI and Ni leaves a Raney alloy suitable as skeletal catalyst for increased gas evolution

3. Results and discussion

3.1 Diffusion
- Up to 30 minutes heat treatment of the Al/Ni couple at 600 °C leads to a fast formation of leachable intermetallic phases (Al3Ni2, Al3Ni) (Figure 1)

3.2 Characterization of electrodes
- Hydrogen and oxygen evolution reactions were measured

4. Conclusion

- A porous and highly efficient electrode was created
- Fast diffusion of Nickel in columnar Aluminum occurred
- Longer diffusion times yielded higher HER activity.
- Only slight changes in activity for the OER with increased diffusion time
- HER overpotentials @100 mA/cm2 as low as 123 mV (385 mV lower than polished Ni)
- OER overpotentials @100 mA/cm2 as low as 338 mV (74 mV lower than polished Ni)