HIDiC - Design, Sensitivity and Graphical Representation

Meyer, K.; Ianniciello, L.; Nielsen, J. E.; Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
HIDIC – DESIGN, SENSITIVITY AND GRAPHICAL REPRESENTATION

Introduction
The internally heat integrated distillation column (HIDIC) is a potential replacement for the conventional distillation column for certain applications, offering reduced utility consumption of separation in more complex equipment. In addition, the conceptual design of the HIDIC is significantly more difficult and classical short-cut methods such as that of McCabe-Thiele are not eligible. This work provides an application of a proposed algorithm for systematically generating feasible HIDIC designs for the separation of isopropanol/water (IPA/W).

Design Algorithm
HIDIC design [1,2,3] is not uncomplicated. In this work, a pragmatic approach is presented to provide fundamental insights in the design of a HIDIC to identify its strength and limitations:

1. CDIC Design (A=0, P_r/P_s=1)
2. Simultaneously adjust Q_r and Q_a
3. Thermal coupling
4. Store current solution, and adjust A
5. Is min\(T_s - \Delta T_{min}\)?
 - NO: Increase \(P_r/P_s\)
 - YES: Is A physical realizable?
 - NO: Select optimum alternative and perform sensitivity analysis
 - YES: Are \(x_r = x_{CDIC}\) and \(x_s = x_{CDIC}\)?

Thermal Coupling
It is often observed that a large heat exchange area is required for obtaining high thermodynamic efficiency, and thus the amount of thermal coupling is preferably maximized. However, the sizes of the distillation column sections and their temperature profiles are important factors.

IPA/W is an example of a non-ideal mixture, which relative volatility varies from 1.8 in the top \((x_r=0.57)\) to 42 in the bottom \((x_r=0.001)\). See Figure 2 for column temperature profile.

Heat Transfer Area and Pressure Ratio
As thermal coupling has been established, two remaining design degrees of freedom exist: The internal, stage-wise heat exchange area \((A)\) and the pressure ratio between sections \((P_r/P_s)\).

The proposed algorithm is employed for the separation of IPA/W, and the obtained path/isotherm is illustrated in Figure 2 along with the feasible design window for two different thermal couplings. Here, a weighted combination of reboiler duty and electricity consumption is used as an evaluation criteria to be minimized but TAC can also be employed.

![Figure 2. Examples of contour plots of normalized total energy consumption defined by (QR+2W)/TAC for different couplings.](image)

The top coupled configuration is chosen since the most significant energy savings can be obtained. Since the energy consumption decreases along the isotherm, the maximum feasible heat exchange area is used leading to:

\[
P_r/P_s = 1.35 \quad A = 0.215 \, \text{m}^2
\]

A stop criteria for the maximum heat exchange area could be based on geometric considerations for the concentric HIDIC [1], which in this case is relatively small (Table 1).

![Figure 1. Example thermal couplings for the HIDIC. Note flow exchange streams between sections in the HIDICs are omitted for simplification.] image

Table 1. Evaluation of HIDIC design. Column area estimated by conventional method using 80% flooding.

<table>
<thead>
<tr>
<th>Section</th>
<th>Column Area/m²</th>
<th>Proposed Heat Area</th>
<th>Possible Heat Area [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectifier</td>
<td>0.0014</td>
<td>0.215</td>
<td>0.026</td>
</tr>
<tr>
<td>Stripper</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Concluding Remarks
- A proposed algorithm for generating feasible HIDIC designs has been presented
- The algorithm has been applied on the separation of aqueous isopropanol with obtained energy reduction of 17%

References