IceWind Inter-comparison of Icing Production Loss Models

- DTU Wind Energy
 - Neil Davis
 - Andrea Hahmann
 - Niels-Erik Clausen
 - Pierre Pinson (DTU Electro)
 - Mark Žagar (Vestas)
- Kjeller Vindteknikk
 - Øyvind Byrkjedal
- VTT
 - Timo Karlsson
 - Tomas Wallenius
 - Ville Turkia
- WeatherTech Scandinavia
 - Stefan Söderberg
 - Magnus Baltscheffsky

Vestas

DTU Electro

WeatherTech

Kjeller Vindteknikk

norden

Top-level Research Initiative
IceWind

- Nordic Project supported by Top-Level Research Initiative (TFI)
- Improved forecast of wind, waves and icing
- 13 Project partners
- Work Package 1: Wind turbine icing
Observations

- Selected data from 15 wind farms
 - Averaged to wind farm values, not turbine specific
 - 2 years of data (June 2010-June 2012)
 - Observed icing times from automated approach classifying production loss
 - Data removed when turbines not operating optimally
• Note 2 regimes in different wind farms

• Similar results from both years
WRF model data

- Provided by Vestas at 3 km
- WSM5 microphysics
- 6 hour spin up cycle
- Provided Fields
 - Wind Speed
 - Temperature
 - Pressure
 - 4 Cloud types
 - Precipitation rate
 - Specific humidity
 - Shortwave radiation
 - Longwave radiation
WRF model data

- 3D Representation of the atmosphere
- Data interpolated to 40, 80, 120, 160 and 200 m AGL
Production Loss Models
DTU model

- **Mixed model**
 - Fits separate models for forecast ice / no ice conditions

- **Generalized Additive Model**

- Utilizes results from WRF and iceBlade
 - IceBlade modified to include cloud ice for WSM5 microphysics

- **Fit separately for each farm in this study with consistent variables**
Kjeller Model

- Two-parameter power curve
 - Suggested by wind tunnel results
 - Ice mass and wind speed
 - Tuned and validated using operational data
- Uses a standard cylinder for ice mass modeling
- Assumes power yield of 0 at approximately 9 kg/m
VTT

- Based on statistical analysis of power loss observations
- Produces an estimate for power loss due to rotor icing
 - Based on wind speed and length of icing event
 - Independent of icing or production forecasting methods
- Requires external icing forecast
 - Used iceBlade accumulated icing for this comparison
WeatherTech Scandinavia

- WICE – WeatherTech Ice Model
- Artificial Neural Network
 - Trained with observed clean & iced production
- Tested for different turbines & locations
- Either forecast or assessment tool
Results
Terminology

- 2 Years (defined June – May)
 - Year 1 Used to fit statistical models
 - Year 2 Evaluation year
- 2 Power estimates
 - Gross: power estimate without icing
 - Iced: power estimate with icing
- 2 Observed Conditions
 - Ice: times when observations suggest icing
 - No Ice: times without icing
- 14 Farms (Labeled A-O, ex. G)
- 4 Models (Labeled I-IV)
- Power curve fit to nacelle wind speed
- Gross estimates similar across models
- Much larger errors for observed icing cases
- Error pattern similar to impact of icing from boxplot
- Peak near zero for all models
- Symmetrical bias for no ice
- Ice condition skewed positive signifying higher estimated power than observed
- No large deviation across models
- Large improvement in year 1 for Models II, III and IV
- Much smaller improvement in year 2
- General shift of positive bias to negative
- Year 2 shows larger shift of bias from positive to negative
- Reasonable performance from all models
- Large differences between models at most sites
- Can pick out sites with low ice impact
- Model III and IV slightly outperform other models at several sites
• Colors signify years
• Model II appears to have over fit model to year 1
• Models III and IV shows larger errors at sites with less icing than other models
• Using any ice model almost always reduces bias
• Bias reduced more for sites with large amounts of ice
• Not a large change from year to year
• Iced RMSE often worse than Gross, due to the decrease in performance for non-iced times

• Depending on agreement, bias correction may offset increased error
Conclusions

• Models perform similarly
• Differences appear mostly due to park conditions
• Large improvements still possible
 • Longer periods for model fit to reduce over fitting
 • WRF runs customized for icing
 • Ice ablation methods & relationship to power
• Agreed upon metric is needed to help improve the models
 • Bias was improved at most sites
 • RMSE was not improved as much
• Using human input could improve these models, need judgment on when to apply them