NanoSafer vs. 1.1 Nanomaterial risk assessment using first order modeling

Jensen, Keld A.; Saber, A. T.; Kristensen, Henrik Vejen; Liguori, Biase; Jensen, A. C. Ø.; Koponen, Ismo K.; Wallin, H.

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
NanoSafer vs. 1.1 Nanomaterial risk assessment using first order modeling

KA Jensen*, AT Saber*, HV Kristensen^, B Liguori*#, ACØ Jensen*, Ik Koponen*, and H Wallin*

* National Research Centre for the Working Environment, Copenhagen, DENMARK
Danish Technological Institute, Høje Taastrup, DENMARK
^ Technical University of Denmark, København Lyngby, DENMARK

1. NanoSafer is an online control banding and risk management tool for Manufactured Nanomaterials (MMN). Hazard assessment and case-specific exposure potentials are currently combined into an integrated assessment of risk levels expressed in control bands with associated risk management recommendations and e-learning. The tool is currently intended for SME’s. Further developments aims at more advanced applicability, including administrative and regulatory use.

2. Input data are typically available from the producers’ technical information sheets. The hazard data are given in the SDS for the closest analogue bulk material for which the requested occupational exposure limit (OEL) is given as well. The emission potential is either given by a constant release rate or the dustiness level determined using the EN15051 rotating drum or similar.

3. Hazard Evaluation is based on the physicochemical properties of the MN (water solubility, aspect ratio, presence of coatings), risk sentences of the nearest bulk analogue compound deemed relevant for the respiratory tract and the occupational exposure limit (OEL) of the nearest bulk analogue compound.

4. Exposure Estimation is made using a two-box near-field (NF) and far-field (FF) source-to-receptor modelling assuming instant mixing. The emission potential is a constant emission rate \(E\), normalized to the powder dustiness levels (must be multiplied with a default activity energy factor \(H\)) and the mass-flow \((dM/dt)\) using either the total mass in the work cycle or the amount added in each transfer (e.g., bag) if the transfer takes longer than 1 minute. Powder dispersion and transfer between the NF and FF are calculated considering convection \(v\) and ventilation rates \(\dot{Q}\) between the NF and FF compartments, the general FF ventilation rate, and the volumes \(V\) of the NF and FF compartments.

5. Scaling is made to enable assessment of the risk level associated with the specific NM and work situation. The hazard scale for a NM is given by \(H_{tot}\), calculated under bullet 2 and takes values between 0.2 and 1.0. The exposure potential is scaled by normalizing the 15 min \((E_{15,FF})\) with the specific NM and work situation. The hazard scale for a NM is a first order approximation based on a volume source field \(Q_{NF}\) or a constant emission rate \(E\) multiplied with a theoretical NM occupational exposure limit \((OEL_{norm})\).

6. Control Banding and Risk Management. Four different control banding charts with individual assessment of the hazard potential and the potential to exceed acute and 8-hour \(OEL_{norm}\) in the NF and FF, respectively. The control band charts have 5 risk levels (RL), ranging from RL1 with low hazard and low exposure potential to RL5 with high hazard and moderate to very high exposure potential. Each RL is associated with brief standard guidance on risk management and further information and advise on risk management is available as up-linked e-learning tools, pamphlets, and a background report.

Table: NanoSafer Risk Assessment

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Exposure</th>
<th>RL5</th>
<th>RL5</th>
<th>RL5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1.00</td>
<td>0.76-1.00</td>
<td>RL5</td>
<td>RL5</td>
<td>RL5</td>
<td>RL5</td>
</tr>
<tr>
<td>0.51-0.75</td>
<td>0.51-1.00</td>
<td>RL5</td>
<td>RL5</td>
<td>RL4</td>
<td>RL4</td>
</tr>
<tr>
<td>0.26-0.50</td>
<td>0.26-0.50</td>
<td>RL5</td>
<td>RL4</td>
<td>RL4</td>
<td>RL3</td>
</tr>
<tr>
<td>0.11-0.25</td>
<td>0.11-0.25</td>
<td>RL4</td>
<td>RL4</td>
<td>RL3</td>
<td>RL2</td>
</tr>
<tr>
<td><0.11</td>
<td>0.00-0.25</td>
<td>RL4</td>
<td>RL3</td>
<td>RL2</td>
<td>RL1</td>
</tr>
</tbody>
</table>