Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate - DTU Orbit (02/09/2019)

Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate

This study evaluated the possibility of using rapeseed straw hemicellulosic hydrolysate as a fermentation medium for xylitol production. Two yeast strains, namely Debaryomyces hansenii and Candida guilliermondii, were used for this bioconversion process and their performance to convert xylose into xylitol was compared. Additionally, different strategies were evaluated for the hydrolysate detoxification before its use as a fermentation medium. Assays in semi-defined media were also performed to verify the influence of hexose sugars on xylose metabolism by the yeasts. C. guilliermondii exhibited higher tolerance to toxic compounds than D. hansenii. Not only the toxic compounds present in the hydrolysate affected the yeast's performance, but glucose also had a negative impact on their performance. It was not necessary to completely eliminate the toxic compounds to obtain an efficient conversion of xylose into xylitol, mainly by C. guilliermondii (YP/S = 0.55 g/g and 0.45 g/g for C. guilliermondii and D. hansenii, respectively).

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Biomass Conversion and Bioprocess Technology, University of Jaén
Corresponding author: Mussatto, S. I.
Contributors: López-Linares, J. C., Romero, I., Cara, C., Castro, E., Mussatto, S. I.
Pages: 736-743
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Bioresource Technology
Volume: 247
ISSN (Print): 0960-8524
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 7.08 SJR 2.157 SNIP 1.824
Web of Science (2018): Indexed yes
Original language: English
Keywords: Detoxification, Hemicellulosic hydrolysate, Rapeseed straw, Semi-defined media, Xylitol
Electronic versions:
xylitol.pdf. Embargo ended: 22/09/2018
DOIs:
10.1016/j.biortech.2017.09.139
Source: FindIt
Source ID: 2390180470
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review