Xenomicrobiology: a roadmap for genetic code engineering

Carlos G Acevedo-Rocha, Nediljko Budisa

Research output: Contribution to journalJournal articleResearchpeer-review

233 Downloads (Pure)

Abstract

Biology is an analytical and informational science that is becoming increasingly dependent on chemical synthesis. One example is the high-throughput and low-cost synthesis of DNA, which is a foundation for the research field of synthetic biology (SB). The aim of SB is to provide biotechnological solutions to health, energy and environmental issues as well as unsustainable manufacturing processes in the frame of naturally existing chemical building blocks. Xenobiology (XB) goes a step further by implementing non-natural building blocks in living cells. In this context, genetic code engineering respectively enables the re-design of genes/genomes and proteins/proteomes with non-canonical nucleic (XNAs) and amino (ncAAs) acids. Besides studying information flow and evolutionary innovation in living systems, XB allows the development of new-to-nature therapeutic proteins/peptides, new biocatalysts for potential applications in synthetic organic chemistry and biocontainment strategies for enhanced biosafety. In this perspective, we provide a brief history and evolution of the genetic code in the context of XB. We then discuss the latest efforts and challenges ahead for engineering the genetic code with focus on substitutions and additions of ncAAs as well as standard amino acid reductions. Finally, we present a roadmap for the directed evolution of artificial microbes for emancipating rare sense codons that could be used to introduce novel building blocks. The development of such xenomicroorganisms endowed with a 'genetic firewall' will also allow to study and understand the relation between code evolution and horizontal gene transfer.
Original languageEnglish
JournalMicrobial Biotechnology
Volume9
Issue number5
Pages (from-to)666-676
Number of pages11
ISSN1751-7907
DOIs
Publication statusPublished - 2016

Bibliographical note

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Fingerprint Dive into the research topics of 'Xenomicrobiology: a roadmap for genetic code engineering'. Together they form a unique fingerprint.

Cite this