Abstract
Independent control of carrier density and out-of-plane displacement field is essential for accessing novel phenomena in two-dimensional (2D) material heterostructures. While this is achieved with independent top and bottom metallic gate electrodes in transport experiments, it remains a challenge for near-field optical studies as the top electrode interferes with the optical path. Here, we characterize the requirements for a material to be used as the top-gate electrode and demonstrate experimentally that few-layer WSe2 can be used as a transparent, ambipolar top-gate electrode in infrared near-field microscopy. We carry out nanoimaging of plasmons in a bilayer graphene heterostructure tuning the plasmon wavelength using a trilayer WSe2 gate, achieving a density modulation amplitude exceeding 2 × 1012 cm-2. The observed ambipolar gate-voltage response allows us to extract the energy gap of WSe2, yielding a value of 1.05 eV. Our results provide an additional tuning knob to cryogenic near-field experiments on emerging phenomena in 2D materials and moiré heterostructures.
Original language | English |
---|---|
Journal | Nano Letters |
Volume | 22 |
Issue number | 15 |
Pages (from-to) | 6200-6206 |
ISSN | 1530-6984 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- 2D materials
- Ambipolar
- Near-field microscopy
- Top gate
- Transparent electrode