‘Wind theft’ from onshore wind turbine arrays: Sensitivity to wind farm parameterization and resolution

Sara C. Pryor*, Tristan J. Shepherd, Patrick J.H. Volker, Andrea N. Hahmann, Rebecca Jane Barthelmie

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

77 Downloads (Pure)


High-resolution simulations are conducted with the Weather Research and Forecasting model to evaluate the sensitivity of wake effects and power production from two wind farm parametrizations (the commonly used Fitch scheme and the more recently developed Explicit Wake Parameterization (EWP)) to the resolution at which the model is applied. The simulations are conducted for a 9-month period for a domain encompassing much of the US Midwest. The two horizontal resolutions considered at 4 by 4 km and 2 by 2 km grid cells, and the two vertical discretizations employ either 41 or 57 vertical layers (with the latter having double the number in the lowest 1km). Higher wind speeds are observed close to the wind turbine hub-height when a larger number of vertical layers are employed (12 in the lowest 200 m, versus six), which contributes to higher power production from both wind farm schemes. Differences in gross capacity factors for wind turbine power production from the two wind farm parameterizations and with resolution are most strongly manifest under stable conditions (i.e. at night). The spatial extent of wind farm wakes when defined as the area affected by velocity deficits near to wind turbine hub-heights in excess of 2% of the simulation without wind turbines are considerably larger in simulations with the Fitch scheme. This spatial extent is generally reduced by increasing the horizontal resolution and/or increasing the number of vertical levels. These results have important applications to projections of expected annual energy production from new wind turbine arrays constructed in the wind shadow from existing wind farms.
Original languageEnglish
JournalJournal of Applied Meteorology and Climatology
Issue number1
Pages (from-to)153-174
Number of pages22
Publication statusPublished - 2020


Dive into the research topics of '‘Wind theft’ from onshore wind turbine arrays: Sensitivity to wind farm parameterization and resolution'. Together they form a unique fingerprint.

Cite this