Wavelets for Non-expanding Dilations and the Lattice Counting Estimate - DTU Orbit
(07/11/2019)

Wavelets for Non-expanding Dilations and the Lattice Counting Estimate

We show that problems of existence and characterization of wavelets for non-expanding dilations are intimately connected
with the geometry of numbers; more specifically, with a bound on the number of lattice points in balls dilated by the powers
of a dilation matrix $A \in \text{GL}(n, \mathbb{R})$. This connection is not visible for the well-studied class of expanding dilations since the
desired lattice counting estimate holds automatically. We show that the lattice counting estimate holds for all dilations A
with $|\det A| \neq 1$ and for almost every lattice Γ with respect to the invariant probability measure on the set of lattices. As a
consequence, we deduce the existence of minimally supported frequency (MSF) wavelets associated with such dilations
for almost every choice of a lattice. Likewise, we show that MSF wavelets exist for all lattices and almost every choice of a
dilation A with respect to the Haar measure on $\text{GL}(n, \mathbb{R})$.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics, University of Oregon
Contributors: Bownik, M., Lemvig, J.
Number of pages: 28
Pages: 7264-7291
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: International Mathematics Research Notices
Volume: 2017
Issue number: 23
ISSN (Print): 1073-7928
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 0.74 SJR 1.752 SNIP 1.124
Web of Science (2016): Impact factor 0.924
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
Wavelets_for_non_expanding_dilations_nonexp_revised.pdf. Embargo ended: 01/11/2017
DOIs:
10.1093/imrn/rnw222
Source: PublicationPreSubmission
Source ID: 127883260
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review