TY - JOUR
T1 - Water vapor permeability of polymeric packaging materials for novel glass‐free photovoltaic applications
AU - Babin, Markus
AU - Eder, Gabriele C.
AU - Voronko, Yuliya
AU - Oreski, Gernot
PY - 2024
Y1 - 2024
N2 - Moisture ingress in photovoltaic (PV) modules is a critical factor for performance degradation, therefore, a low water vapor transmission rate (WVTR) is highly desirable for polymers used to embed the solar cells, including backsheets, frontsheets, and encapsulants. With the advent of glass‐free modules for integration in building envelopes and vehicles, there is growing interest in polymer composite structures with embedded glass fibers to enhance rigidity. Furthermore, due to environmental concerns, there is increased interest in fluorine‐free polymers for PV applications. In this work, 21 samples with different base polymers, coatings, and/or surface treatments are investigated and their WVTRs are measured. The results show no good alternatives to existing fluoride‐based polymers/coatings for reducing WVTRs of backsheets and frontsheets among the investigated samples. In addition, glass fibers embedded within polymers to provide increased stability to backsheets or in composites for lightweight PV are shown to significantly increase WVTRs, especially, when fibers are not properly embedded, providing additional diffusion pathways for moisture ingress.
AB - Moisture ingress in photovoltaic (PV) modules is a critical factor for performance degradation, therefore, a low water vapor transmission rate (WVTR) is highly desirable for polymers used to embed the solar cells, including backsheets, frontsheets, and encapsulants. With the advent of glass‐free modules for integration in building envelopes and vehicles, there is growing interest in polymer composite structures with embedded glass fibers to enhance rigidity. Furthermore, due to environmental concerns, there is increased interest in fluorine‐free polymers for PV applications. In this work, 21 samples with different base polymers, coatings, and/or surface treatments are investigated and their WVTRs are measured. The results show no good alternatives to existing fluoride‐based polymers/coatings for reducing WVTRs of backsheets and frontsheets among the investigated samples. In addition, glass fibers embedded within polymers to provide increased stability to backsheets or in composites for lightweight PV are shown to significantly increase WVTRs, especially, when fibers are not properly embedded, providing additional diffusion pathways for moisture ingress.
U2 - 10.1002/app.55733
DO - 10.1002/app.55733
M3 - Journal article
SN - 0021-8995
VL - 141
JO - Journal of Applied Polymer Science
JF - Journal of Applied Polymer Science
IS - 31
M1 - e55733
ER -