Voltammetry and in situ scanning tunnelling spectroscopy of osmium, iron, and ruthenium complexes of 2,2′:6′,2′′-terpyridine covalently linked to Au(111)-electrodes

Princia Salvatore, Allan Glargaard Hansen, Kasper Moth-Poulsen, Thomas Bjørnholm, Richard John Nichols, Jens Ulstrup

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

We have studied self-assembled molecular monolayers (SAMs) of complexes between Os(ii)/(iii), Fe(ii)/(iii), and Ru(ii)/(iii) and a 2,2′,6′,2′′-terpyridine (terpy) derivative linked to Au(111)-electrode surfaces via a 6-acetylthiohexyloxy substituent at the 4′-position of terpy. The complexes were prepared in situ by first linking the terpy ligand to the surface via the S-atom, followed by addition of suitable metal compounds. The metal-terpy SAMs were studied by cyclic voltammetry (CV), and in situ scanning tunnelling microscopy with full electrochemical potential control of substrate and tip (in situ STM). Sharp CV peaks were observed for the Os- and Fe complexes, with interfacial electrochemical electron transfer rate constants of 6–50 s−1. Well-defined but significantly broader peaks (up to 300 mV) were observed for the Ru-complex. Addition of 2,2′-bipyridine (bipy) towards completion of the metal coordination spheres induced voltammetric sharpening. In situ STM images of single molecular scale strong structural features were observed for the osmium and iron complexes. As expected from the voltammetric patterns, the surface coverage was by far the highest for the Ru-complex which was therefore selected for scanning tunnelling spectroscopy. These correlations displayed a strong peak around the equilibrium potential with systematic shifts with increasing bias voltage, as expected for a sequential two-step in situ ET mechanism.
Original languageEnglish
JournalPhysical Chemistry Chemical Physics
Volume13
Issue number32
Pages (from-to)14394-14403
ISSN1463-9076
DOIs
Publication statusPublished - 2011

Fingerprint Dive into the research topics of 'Voltammetry and in situ scanning tunnelling spectroscopy of osmium, iron, and ruthenium complexes of 2,2′:6′,2′′-terpyridine covalently linked to Au(111)-electrodes'. Together they form a unique fingerprint.

Cite this