Viscoelastic characterization of asphalt concrete in diametral tension-compression

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

This work focuses on improving the linear viscoelastic characterization of asphalt concrete materials with a standard indirect tension setup. Three main aspects distinguish this investigation from typical efforts. First, the applied diametral force history consisted of load-unload-rest sequences; this was done to enable separation between recoverable and irrecoverable deformation components. Second, viscoelastic properties were essentially calibrated against the recoverable deformation part to guarantee agreement with the sought constitutive theory; response during rest intervals was modeled for this purpose, assuming inactivity of the irrecoverable deformation part. Third, diametral forces were alternated between tension and compression; this was done to restrain the accumulation of irrecoverable deformation and to widen the calibration domain. Detailed step-by-step guidelines are included and applied to clarify the approach. For pavement engineering purposes, the overall scheme is deemed an improvement over common or existing methods.
Original languageEnglish
JournalJournal of Materials in Civil Engineering
Volume28
Issue number1
Number of pages13
ISSN0899-1561
DOIs
Publication statusPublished - 2016
Externally publishedYes

Fingerprint Dive into the research topics of 'Viscoelastic characterization of asphalt concrete in diametral tension-compression'. Together they form a unique fingerprint.

Cite this