Virulence determinants of Pseudomonas syringae strains isolated from grasses in the context of a small type III effector repertoire

Alexey Dudnik, Robert Dudler

Research output: Contribution to journalJournal articleResearchpeer-review

313 Downloads (Pure)

Abstract

Background: Pseudomonas syringae is pathogenic to a large number of plant species. For host colonization and disease progression, strains of this bacterium utilize an array of type III-secreted effectors and other virulence factors, including small secreted molecules such as syringolin A, a peptide derivative that inhibits the eukaryotic proteasome. In strains colonizing dicotyledonous plants, the compound was demonstrated to suppress the salicylic-acid-dependent defense pathway. Here, we analyze virulence factors of three strains colonizing wheat (Triticum aestivum): P. syringae pathovar syringae (Psy) strains B64 and SM, as well as P. syringae BRIP34876. These strains have a relatively small repertoire of only seven to eleven type III-secreted effectors (T3Es) and differ in their capacity to produce syringolin A. The aim of this study was to analyze the contribution of various known virulence factors in the context of a small T3E repertoire.Results: We demonstrate that syringolin A production enhances disease symptom development upon direct infiltration of strains into wheat leaves. However, it is not universally required for colonization, as Psy SM, which lacks syringolin biosynthesis genes, reaches cell densities comparable to syringolin A producer P. syringae BRIP34876. Next, we show that despite the small set of T3E-encoding genes, the type III secretion system remains the key pathogenicity determinant in these strains, and that phenotypic effects of deleting T3E-coding genes become apparent only when multiple effectors are removed.Conclusions: Whereas production of syringolin A is not required for successful colonization of wheat leaves by P. syringae strains, its production results in increased lesion formation. Despite the small number of known T3Es encoded by the analyzed strains, the type III secretion system is essential for endophytic growth of these strains.
Original languageEnglish
Article number304
JournalBMC Microbiology
Volume14
Number of pages9
ISSN1471-2180
DOIs
Publication statusPublished - 2014

Keywords

  • Pseudomonas syringae infection bacterial disease
  • Gram-Negative Aerobic Rods and Cocci Eubacteria Bacteria Microorganisms (Bacteria, Eubacteria, Microorganisms) - Pseudomonadaceae [06508] Pseudomonas syringae species wheat common pathogen pathovar-synngoe, strain-SM, strain-BRIP34876, strain-B64
  • Monocotyledones Angiospermae Spermatophyta Plantae (Angiosperms, Monocots, Plants, Spermatophytes, Vascular Plants) - Gramineae [25305] Triticum aestivum species host, grain crop cultivar-Chinese Spring
  • genes
  • syringolin A 212115-96-3 synthesis
  • type III secreted effectors
  • 03502, Genetics - General
  • 03504, Genetics - Plant
  • 10062, Biochemistry studies - Nucleic acids, purines and pyrimidines
  • 31000, Physiology and biochemistry of bacteria
  • 31500, Genetics of bacteria and viruses
  • 52504, Agronomy - Grain crops
  • 54504, Phytopathology - Diseases caused by bacteria
  • Biochemistry and Molecular Biophysics
  • leaf
  • Infection
  • Molecular Genetics

Fingerprint Dive into the research topics of 'Virulence determinants of Pseudomonas syringae strains isolated from grasses in the context of a small type III effector repertoire'. Together they form a unique fingerprint.

Cite this