TY - JOUR
T1 - Video-rate, mid-infrared hyperspectral upconversion imaging
AU - Junaid, Saher
AU - Chaitanya Kumar, S.
AU - Mathez, Morgan David
AU - Hermes, M.
AU - Stone, N.
AU - Shephard, N.
AU - Ebrahim-Zadeh, M.
AU - Tidemand-Lichtenberg, Peter
AU - Pedersen, Christian
PY - 2019
Y1 - 2019
N2 - In this work we demonstrate, to the best of our knowledge, a novel wide field-of-view upconversion system, supporting upconversion of monochromatic mid-infrared (mid-IR) images, e.g., for hyperspectral imaging (HSI). An optical parametric oscillator delivering 20 ps pulses tunable in the 2.3–4 μm range acts as a monochromatic mid-IR illumination source. A standard CCD camera, in synchronism with the crystal rotation of the upconversion system, acquires in only 2.5 ms the upconverted mid-IR images containing 64 kpixels, thereby eliminating the need for postprocessing. This approach is generic in nature and constitutes a major simplification in realizing video-frame-rate mid-IR monochromatic imaging. A second part of this paper includes a proof-of-principle study on esophageal tissues samples, from a tissue microarray, in the 3–4 μm wavelength range. The use of mid-IR HSI for investigation of esophageal cancers is particularly promising as it allows for a much faster and possibly more observer-independent workflow than state-of-the-art histology. Comparing histologically stained sections evaluated by a pathologist to images obtained by either Fourier transform IR or upconversion HSI based on machine learning shows great promise for further work pointing towards clinical translation using the presented mid-IR HSI upconversion system.
AB - In this work we demonstrate, to the best of our knowledge, a novel wide field-of-view upconversion system, supporting upconversion of monochromatic mid-infrared (mid-IR) images, e.g., for hyperspectral imaging (HSI). An optical parametric oscillator delivering 20 ps pulses tunable in the 2.3–4 μm range acts as a monochromatic mid-IR illumination source. A standard CCD camera, in synchronism with the crystal rotation of the upconversion system, acquires in only 2.5 ms the upconverted mid-IR images containing 64 kpixels, thereby eliminating the need for postprocessing. This approach is generic in nature and constitutes a major simplification in realizing video-frame-rate mid-IR monochromatic imaging. A second part of this paper includes a proof-of-principle study on esophageal tissues samples, from a tissue microarray, in the 3–4 μm wavelength range. The use of mid-IR HSI for investigation of esophageal cancers is particularly promising as it allows for a much faster and possibly more observer-independent workflow than state-of-the-art histology. Comparing histologically stained sections evaluated by a pathologist to images obtained by either Fourier transform IR or upconversion HSI based on machine learning shows great promise for further work pointing towards clinical translation using the presented mid-IR HSI upconversion system.
U2 - 10.1364/OPTICA.6.000702
DO - 10.1364/OPTICA.6.000702
M3 - Journal article
SN - 2334-2536
VL - 6
SP - 702
EP - 708
JO - Optica
JF - Optica
IS - 6
ER -