Vertical cross-spectral phases in atmospheric flow

Abhijit S. Chougule, Jakob Mann, Mark C. Kelly

Research output: Contribution to journalConference articleResearchpeer-review

249 Downloads (Pure)

Abstract

The cross-spectral phases between velocity components at two heights are analyzed from observations at the Høvsøre test site under diabatic conditions. These phases represent the degree to which turbulence sensed at one height leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity. The phase angles for all atmospheric stabilities show similar order in phasing. The phase angles from the Høvsøre observations under neutral condition are compared with a rapid distortion theory model which show similar order in phase shift.
Original languageEnglish
Article number012017
Book seriesJournal of Physics: Conference Series (Online)
Volume555
Number of pages8
ISSN1742-6596
DOIs
Publication statusPublished - 2014
EventThe science of Making Torque from Wind 2012: 4th scientific conference - Universität Oldenburg, Oldenburg, Germany
Duration: 9 Oct 201211 Oct 2012
http://www.forwind.de/makingtorque/Home.html

Conference

ConferenceThe science of Making Torque from Wind 2012
LocationUniversität Oldenburg
CountryGermany
CityOldenburg
Period09/10/201211/10/2012
Internet address

Bibliographical note

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

Fingerprint Dive into the research topics of 'Vertical cross-spectral phases in atmospheric flow'. Together they form a unique fingerprint.

Cite this