Abstract
Advances in polarization optics and integrated photonics require fundamentally new polarization-managing strategies allowing for efficient generation and complete control over vectorial fields with well-defined polarization states using surface-confined configurations with ultracompact footprints and extended bandwidths. Recently, metasurfaces have been extensively explored to demonstrate compact planar devices enabling diverse polarization control. However, the main drawback of the state-of-the-art metasurface-based polarization converters is related to their limitations resulting in individual simple functionalities and low-efficiencies. Here, the strategy for producing dielectric metasurfaces that efficiently generate diversified polarization states with controllable wavefronts and high efficiencies over a broadband spectrum range from a linearly-polarized light source by generalizing an existing theory of simultaneous phase and polarization control with birefringent meta-atoms, is demonstrated. Advanced polarization and wavefront manipulation functionalized to realize an efficient polarization-resolved multifocal metalens and vectorial holographic display is accomplished using judiciously designed dielectric metasurfaces composed of segmented sub-arrays capable of manipulating, simultaneously and independently, both polarization and phase of the transmitted beams. The versatility of this concept provides opportunities to develop a complete set of flat polarization optics for integrated photonics and quantum optics.
Original language | English |
---|---|
Article number | 2000116 |
Journal | Laser and Photonics Reviews |
Volume | 14 |
Issue number | 11 |
Number of pages | 7 |
ISSN | 1863-8880 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Dielectric metasurfaces
- Multifocal metalens
- Vectorial holographic display
- Versatile polarization generation and manipulation