TY - JOUR
T1 - Versatile CO2 Hydrogenation-Dehydrogenation Catalysis with a Ru-PNP/Ionic Liquid System
AU - Piccirilli, Luca
AU - Rabell, Brenda
AU - Padilla, Rosa
AU - Riisager, Anders
AU - Das, Shoubhik
AU - Nielsen, Martin
N1 - Publisher Copyright:
© 2023 American Chemical Society
PY - 2023
Y1 - 2023
N2 - High catalytic activities of Ru-PNP [Ru = ruthenium; PNP = bis alkyl- or aryl ethylphosphinoamine complexes in ionic liquids (ILs) were obtained for the reversible hydrogenation of CO2 and dehydrogenation of formic acid (FA) under exceedingly mild conditions and without sacrificial additives. The novel catalytic system relies on the synergic combination of Ru-PNP and IL and proceeds with CO2 hydrogenation already at 25 °C under a continuous flow of 1 bar of CO2/H2 (1:5), leading to 14 mol % FA with respect to the IL. A pressure of 40 bar of CO2/H2 (1:1) provides 126 mol % of FA/IL corresponding to a space-time yield (STY) of FA of 0.15 mol L-1 h-1. The conversion of CO2 contained in imitated biogas was also achieved at 25 °C. Furthermore, the Ru-PNP/IL system catalyzes FA dehydrogenation with average turnover frequencies up to 11,000 h-1 under heat-integrated conditions for proton-exchange membrane fuel cell applications (<100 °C). Thus, 4 mL of a 0.005 M Ru-PNP/IL system converted 14.5 L FA over 4 months with a turnover number exceeding 18,000,000 and a STY of CO2 and H2 of 35.7 mol L-1 h-1. Finally, 13 hydrogenation/dehydrogenation cycles were achieved with no sign of deactivation. These results demonstrate the potential of the Ru-PNP/IL system to serve as a FA/CO2 battery, a H2 releaser, and a hydrogenative CO2 converter.
AB - High catalytic activities of Ru-PNP [Ru = ruthenium; PNP = bis alkyl- or aryl ethylphosphinoamine complexes in ionic liquids (ILs) were obtained for the reversible hydrogenation of CO2 and dehydrogenation of formic acid (FA) under exceedingly mild conditions and without sacrificial additives. The novel catalytic system relies on the synergic combination of Ru-PNP and IL and proceeds with CO2 hydrogenation already at 25 °C under a continuous flow of 1 bar of CO2/H2 (1:5), leading to 14 mol % FA with respect to the IL. A pressure of 40 bar of CO2/H2 (1:1) provides 126 mol % of FA/IL corresponding to a space-time yield (STY) of FA of 0.15 mol L-1 h-1. The conversion of CO2 contained in imitated biogas was also achieved at 25 °C. Furthermore, the Ru-PNP/IL system catalyzes FA dehydrogenation with average turnover frequencies up to 11,000 h-1 under heat-integrated conditions for proton-exchange membrane fuel cell applications (<100 °C). Thus, 4 mL of a 0.005 M Ru-PNP/IL system converted 14.5 L FA over 4 months with a turnover number exceeding 18,000,000 and a STY of CO2 and H2 of 35.7 mol L-1 h-1. Finally, 13 hydrogenation/dehydrogenation cycles were achieved with no sign of deactivation. These results demonstrate the potential of the Ru-PNP/IL system to serve as a FA/CO2 battery, a H2 releaser, and a hydrogenative CO2 converter.
U2 - 10.1021/jacs.2c10399
DO - 10.1021/jacs.2c10399
M3 - Journal article
C2 - 36867088
AN - SCOPUS:85149365051
SN - 0002-7863
VL - 145
SP - 5655
EP - 5663
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 10
ER -