Abstract
Representation of a large set of high-dimensional data is a fundamental problem in many applications such as communications and biomedical systems. The problem has been tackled by encoding the data with a compact set of code-vectors called processing elements. In this study, we propose a vector quantization technique that encodes the information in the data using concepts derived from information theoretic learning. The algorithm minimizes a cost function based on the Kullback-Liebler divergence to match the distribution of the processing elements with the distribution of the data. The performance of this algorithm is demonstrated on synthetic data as well as on an edge-image of a face. Comparisons are provided with some of the existing algorithms such as LBG and SOM.
Original language | English |
---|---|
Title of host publication | IEEE International Conference on Neural Networks - Conference Proceedings |
Publication date | 2004 |
Publication status | Published - 2004 |