Variability of wind turbine noise over a diurnal cycle

Emre Barlas, Ka Ling Wu, Wei Jun Zhu, Fernando Porté-Agel, Wen Zhong Shen*

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review


    The diurnal variation of atmospheric conditions over land has a significant effect on the wind and temperature distributions which greatly influence the generation and propagation of wind turbine aerodynamic sound. In this paper, a fully consistent unsteady approach is used to study wind turbine noise such that large eddy simulation with a rotational actuator disk wind turbine model is used to model the wind and temperature around a mega-watt scale wind turbine over a diurnal cycle, and time dependent flow and temperature fields are used as input to the coupled wind turbine noise generation-propagation model. Computations are carried out for four different 10 min datasets selected at certain periods of a day for a same hub height wind speed. It is observed that the time dependent as well as the time averaged sound pressure levels in near field do not show large variations during the day. However, as we move away from the turbine, the propagation effects take over and downwind of the turbine the night time levels exceed the day time levels (at 3600 m the averaged difference reaches 6.5 dBA).
    Original languageEnglish
    JournalRenewable Energy
    Pages (from-to)791-800
    Number of pages10
    Publication statusPublished - 2018


    • Diurnal cycle
    • Large eddy simulation
    • Parabolic wave equation
    • Variability
    • Wind turbine noise


    Dive into the research topics of 'Variability of wind turbine noise over a diurnal cycle'. Together they form a unique fingerprint.

    Cite this