Validation of endogenous reference genes in rat cerebral cortex for RT-qPCR analyses in developmental toxicity studies

Louise Ramhøj, Marta Axelstad Petersen, Terje Svingen*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

42 Downloads (Pure)

Abstract

Relative gene expression data obtained from quantitative RT-PCR (RT-qPCR) experiments are dependent on appropriate normalization to represent true values. It is common to use constitutively expressed endogenous reference genes (RGs) for normalization, but for this strategy to be valid the RGs must be stably expressed across all the tested samples. Here, we have tested 10 common RGs for their expression stability in cerebral cortex from young rats after in utero exposure to thyroid hormone (TH) disrupting compounds. We found that all 10 RGs were stable according to the three algorithms geNorm, NormFinder and BestKeeper. The downstream target gene Pvalb was significantly downregulated in brains from young rats after in utero exposure to propylthiouracil (PTU), a medicinal drug inhibiting TH synthesis. Similar results were obtained regardless of which of the 10 RGs was used for normalization. Another potential gene affected by developmental TH disruption, Dio2, was either not affected, or significantly upregulated about 1.4-fold, depending on which RG was used for normalization. This highlights the importance of carefully selecting correct RGs for normalization and to take into account the sensitivity of the RT-qPCR method when reporting on changes to gene expression that are less than 1.5-fold. For future studies examining relative gene expression in rat cerebral cortex under toxicological conditions, we recommend using a combination of either Rps18/Rpl13a or Rps18/Ubc for normalization, but also continuously monitor any potential regulation of the RGs themselves following alterations to study protocols.
Original languageEnglish
Article numbere7181
JournalPeerJ
Volume7
Number of pages13
ISSN2167-8359
DOIs
Publication statusPublished - 2019

Keywords

  • qPCR
  • Reference gene
  • Housekeeping gene
  • Gene expression
  • Rat
  • Toxicology
  • Brain
  • Cortex

Cite this

@article{b4d8a37906fc43ffa8592ad41ca5bc27,
title = "Validation of endogenous reference genes in rat cerebral cortex for RT-qPCR analyses in developmental toxicity studies",
abstract = "Relative gene expression data obtained from quantitative RT-PCR (RT-qPCR) experiments are dependent on appropriate normalization to represent true values. It is common to use constitutively expressed endogenous reference genes (RGs) for normalization, but for this strategy to be valid the RGs must be stably expressed across all the tested samples. Here, we have tested 10 common RGs for their expression stability in cerebral cortex from young rats after in utero exposure to thyroid hormone (TH) disrupting compounds. We found that all 10 RGs were stable according to the three algorithms geNorm, NormFinder and BestKeeper. The downstream target gene Pvalb was significantly downregulated in brains from young rats after in utero exposure to propylthiouracil (PTU), a medicinal drug inhibiting TH synthesis. Similar results were obtained regardless of which of the 10 RGs was used for normalization. Another potential gene affected by developmental TH disruption, Dio2, was either not affected, or significantly upregulated about 1.4-fold, depending on which RG was used for normalization. This highlights the importance of carefully selecting correct RGs for normalization and to take into account the sensitivity of the RT-qPCR method when reporting on changes to gene expression that are less than 1.5-fold. For future studies examining relative gene expression in rat cerebral cortex under toxicological conditions, we recommend using a combination of either Rps18/Rpl13a or Rps18/Ubc for normalization, but also continuously monitor any potential regulation of the RGs themselves following alterations to study protocols.",
keywords = "qPCR, Reference gene, Housekeeping gene, Gene expression, Rat, Toxicology, Brain, Cortex",
author = "Louise Ramh{\o}j and Petersen, {Marta Axelstad} and Terje Svingen",
year = "2019",
doi = "10.7717/peerj.7181",
language = "English",
volume = "7",
journal = "PeerJ",
issn = "2167-8359",
publisher = "PeerJ",

}

TY - JOUR

T1 - Validation of endogenous reference genes in rat cerebral cortex for RT-qPCR analyses in developmental toxicity studies

AU - Ramhøj, Louise

AU - Petersen, Marta Axelstad

AU - Svingen, Terje

PY - 2019

Y1 - 2019

N2 - Relative gene expression data obtained from quantitative RT-PCR (RT-qPCR) experiments are dependent on appropriate normalization to represent true values. It is common to use constitutively expressed endogenous reference genes (RGs) for normalization, but for this strategy to be valid the RGs must be stably expressed across all the tested samples. Here, we have tested 10 common RGs for their expression stability in cerebral cortex from young rats after in utero exposure to thyroid hormone (TH) disrupting compounds. We found that all 10 RGs were stable according to the three algorithms geNorm, NormFinder and BestKeeper. The downstream target gene Pvalb was significantly downregulated in brains from young rats after in utero exposure to propylthiouracil (PTU), a medicinal drug inhibiting TH synthesis. Similar results were obtained regardless of which of the 10 RGs was used for normalization. Another potential gene affected by developmental TH disruption, Dio2, was either not affected, or significantly upregulated about 1.4-fold, depending on which RG was used for normalization. This highlights the importance of carefully selecting correct RGs for normalization and to take into account the sensitivity of the RT-qPCR method when reporting on changes to gene expression that are less than 1.5-fold. For future studies examining relative gene expression in rat cerebral cortex under toxicological conditions, we recommend using a combination of either Rps18/Rpl13a or Rps18/Ubc for normalization, but also continuously monitor any potential regulation of the RGs themselves following alterations to study protocols.

AB - Relative gene expression data obtained from quantitative RT-PCR (RT-qPCR) experiments are dependent on appropriate normalization to represent true values. It is common to use constitutively expressed endogenous reference genes (RGs) for normalization, but for this strategy to be valid the RGs must be stably expressed across all the tested samples. Here, we have tested 10 common RGs for their expression stability in cerebral cortex from young rats after in utero exposure to thyroid hormone (TH) disrupting compounds. We found that all 10 RGs were stable according to the three algorithms geNorm, NormFinder and BestKeeper. The downstream target gene Pvalb was significantly downregulated in brains from young rats after in utero exposure to propylthiouracil (PTU), a medicinal drug inhibiting TH synthesis. Similar results were obtained regardless of which of the 10 RGs was used for normalization. Another potential gene affected by developmental TH disruption, Dio2, was either not affected, or significantly upregulated about 1.4-fold, depending on which RG was used for normalization. This highlights the importance of carefully selecting correct RGs for normalization and to take into account the sensitivity of the RT-qPCR method when reporting on changes to gene expression that are less than 1.5-fold. For future studies examining relative gene expression in rat cerebral cortex under toxicological conditions, we recommend using a combination of either Rps18/Rpl13a or Rps18/Ubc for normalization, but also continuously monitor any potential regulation of the RGs themselves following alterations to study protocols.

KW - qPCR

KW - Reference gene

KW - Housekeeping gene

KW - Gene expression

KW - Rat

KW - Toxicology

KW - Brain

KW - Cortex

U2 - 10.7717/peerj.7181

DO - 10.7717/peerj.7181

M3 - Journal article

VL - 7

JO - PeerJ

JF - PeerJ

SN - 2167-8359

M1 - e7181

ER -