Abstract
In this study, simulation results of two different computational fluid dynamics codes, Nalu-Wind and EllipSys3D, are presented for a wind turbine rotor in complex yawed and sheared inflow. The results are compared to measurements from the DanAero experiments, to validate computed pressures and azimuthal trends. Despite different code methodologies and grid setups, the codes agree well in computed pressures and integrated forces along the blade for all blade azimuthal positions, however with some discrepancy in the very yawed case. Additionally, both codes capture well the azimuthal trends and force levels seen in measurements. Investigation into discrepancies shows that expanding grids before the rotor, lead to smearing of the wind profiles, which is likely the main cause of the differences in the results between the codes. Additionally, omission of the ground constraint cause discrepancies in relative velocity seen by the passing blade, due to an over speeding beneath the rotor.
Original language | English |
---|---|
Article number | 052049 |
Book series | Journal of Physics: Conference Series (Online) |
Volume | 1618 |
Issue number | 5 |
Number of pages | 10 |
ISSN | 1742-6596 |
DOIs | |
Publication status | Published - 2020 |
Event | TORQUE 2020 - Online event, Netherlands Duration: 28 Sept 2020 → 2 Oct 2020 https://www.torque2020.org/ |
Conference
Conference | TORQUE 2020 |
---|---|
Location | Online event |
Country/Territory | Netherlands |
Period | 28/09/2020 → 02/10/2020 |
Internet address |