TY - JOUR
T1 - Validation of an experimentally-based heat source for flash heating modelling of directed energy deposition: Systematic study of process and simulation parameters
AU - Santi, Alberto
AU - Bayat, Mohamad
AU - Nadimpalli, Venkata Karthik
AU - Fabrizi, Alberto
AU - Bonollo, Franco
AU - Hattel, Jesper Henri
PY - 2024
Y1 - 2024
N2 - Computational prediction of the temperature history during directed energy deposition (DED) is a fundamental input for the subsequent numerical analysis of microstructural characteristics and thermomechanical response. In order to allow for industrial implementation of such simulations, the development of computationally efficient methods taking advantage of multi-scaling techniques is needed. This work provides a new formulation for the flash heating (FH) method to be applied when modeling DED. As with other FH methods, this formulation ensures energy conservation when defining the volumetric heat source term, however, in the present case, the actual deposited cross-sectional area obtained from experiments is used instead of hatch spacing and layer thickness as usually done in FH methods for laser powder bed fusion (LPBF). A new feature of the model is that the high-resolution cross-sectional area of the multi-layer geometry is extracted from optical micrographs, resulting in a curvilinear top surface of every track. The method is validated through comparison with experimental monitoring data and provides valuable information regarding cooling rates, development of the molten area, and heat accumulation when varying process parameters within relevant limits. The influence of varying simulation parameters, such as the partitioning of the geometry and the time used for heating (contact time), on computational cost and accuracy is moreover studied. It is found that a very short contact time is mandatory to ensure the melting of the geometry and, consequently, the proper evaluation of cooling rates and thermal gradients.
AB - Computational prediction of the temperature history during directed energy deposition (DED) is a fundamental input for the subsequent numerical analysis of microstructural characteristics and thermomechanical response. In order to allow for industrial implementation of such simulations, the development of computationally efficient methods taking advantage of multi-scaling techniques is needed. This work provides a new formulation for the flash heating (FH) method to be applied when modeling DED. As with other FH methods, this formulation ensures energy conservation when defining the volumetric heat source term, however, in the present case, the actual deposited cross-sectional area obtained from experiments is used instead of hatch spacing and layer thickness as usually done in FH methods for laser powder bed fusion (LPBF). A new feature of the model is that the high-resolution cross-sectional area of the multi-layer geometry is extracted from optical micrographs, resulting in a curvilinear top surface of every track. The method is validated through comparison with experimental monitoring data and provides valuable information regarding cooling rates, development of the molten area, and heat accumulation when varying process parameters within relevant limits. The influence of varying simulation parameters, such as the partitioning of the geometry and the time used for heating (contact time), on computational cost and accuracy is moreover studied. It is found that a very short contact time is mandatory to ensure the melting of the geometry and, consequently, the proper evaluation of cooling rates and thermal gradients.
KW - 316L
KW - Directed energy deposition
KW - Finite element method
KW - Heat accumulation
KW - Thermal modelling
U2 - 10.1016/j.jmapro.2024.05.026
DO - 10.1016/j.jmapro.2024.05.026
M3 - Journal article
SN - 1526-6125
VL - 121
SP - 35
EP - 50
JO - Journal of Manufacturing Processes
JF - Journal of Manufacturing Processes
ER -