Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers

Ryohei Koguchi, Katja Jankova, Yuki Hayasaka, Daisuke Kobayashi, Yosuke Amino, Tatsuya Miyajima, Shingo Kobayashi, Daiki Murakami, Kyoko Yamamoto, Masaru Tanaka*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

3 Downloads (Pure)

Abstract

Materials exhibiting "bio-inert properties" are essential for developing medical devices because they are less recognized as foreign substances by proteins and cells in the living body. We have reported that the presence of intermediate water (IW) with the water molecules loosely bound to a polymer is a useful index of the bio-inertness of materials. Here, we analyzed the hydration state and the responses to biomolecules of poly(2-hydroxyethyl methacrylate) (PHEMA) copolymers including small amounts of 2-(dimethylamino)ethyl methacrylate (DMAEMA) (N-series) or/and 2,2,2-trifluoroethyl methacrylate (TFEMA) (F-series). The hydration structure was analyzed by differential scanning calorimetry (DSC), the molecular mobility of the produced copolymers by temperature derivative of DSC (DDSC), and the water mobility by solid H-1 pulse nuclear magnetic resonance (NMR). Although the homopolymers did not show bio-inert properties, the binary and ternary PHEMA copolymers with low comonomer contents showed higher bio-inert properties than those of PHEMA homopolymers. The hydration state of PHEMA was changed by introducing a small amount of comonomers. The mobility of both water molecules and hydrated polymers was changed in the N-series nonfreezing water (NFW) with the water molecules tightly bound to a polymer and was shifted to high-mobility IW and free water (FW) with the water molecules scarcely bound to a polymer. On the other hand, in the F-series, FW turned to IW and NFW. Additionally, a synergetic effect was postulated when both comonomers coexist in the copolymers of HEMA, which was expressed by widening the temperature range of cold crystallization, contributing to further improvement of the bio-inert properties.
Original languageEnglish
JournalA C S Biomaterials Science & Engineering
Volume6
Issue number5
Pages (from-to)2855-2866
ISSN2373-9878
DOIs
Publication statusPublished - 2020

Fingerprint Dive into the research topics of 'Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers'. Together they form a unique fingerprint.

Cite this