Abstract
Super-resolution imaging (SRI) can achieve subwavelength resolution by detecting and tracking intravenously injected microbubbles (MBs) over time. However, current SRI is limited by long data acquisition times since the MB detection still relies on diffraction-limited conventional ultrasound images. This limits the number of detectable MBs in a fixed time duration. In this work, we propose a deep learning-based method for detecting and localizing high-density multiple point targets from radio frequency (RF) channel data. A Convolutional Neural Network (CNN) was trained to return confidence maps given RF channel data, and the positions of point targets were estimated from the confidence maps. RF channel data for training and evaluation were simulated in Field II by placing point targets randomly in the region of interest and transmitting three steered plane waves. The trained CNN achieved a precision and recall of 0.999 and 0.960 on a simulated test dataset. The localization errors after excluding outliers were within ± 46 µm and ± 27 µm in the lateral and axial directions. A scatterer phantom was 3-D printed and imaged by the Synthetic Aperture Real-time Ultrasound System (SARUS). On measured data, a precision and recall of 0.976 and 0.998 were achieved, and the localization errors after excluding outliers were within ± 101 µm and ± 75 µm in the lateral and axial directions. We expect that this method can be extended to highly concentrated microbubble (MB) detection in order to accelerate SRI.
Original language | English |
---|---|
Title of host publication | Proceedings of 2019 IEEE International Ultrasonics Symposium |
Publisher | IEEE |
Publication date | 2019 |
Pages | 1937-1940 |
ISBN (Electronic) | 978-1-7281-4596-9 |
DOIs | |
Publication status | Published - 2019 |
Event | 2019 IEEE International Ultrasonics Symposium - SEC Glasgow, Glasgow, United Kingdom Duration: 6 Oct 2019 → 9 Oct 2019 http://attend.ieee.org/ius-2019/ |
Conference
Conference | 2019 IEEE International Ultrasonics Symposium |
---|---|
Location | SEC Glasgow |
Country/Territory | United Kingdom |
City | Glasgow |
Period | 06/10/2019 → 09/10/2019 |
Internet address |