Projects per year
Abstract
Modulated (or coded) excitation signals can potentially improve the quality and increase the frame
rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically
the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate
methods for coded imaging, with the goal of making better anatomic and flow images and three-dimensional
images. On the first stage, it investigates techniques for doing high-resolution coded
imaging with improved signal-to-noise ratio compared to conventional imaging. Subsequently it
investigates how coded excitation can be used for increasing the frame rate. The work includes both
simulated results using Field II, and experimental results based on measurements on phantoms as
well as clinical images.
Initially a mathematical foundation of signal modulation is given. Pulse compression based on
matched filtering is discussed. Correlation and compression properties of coded signals are shown
to depend on a single parameter of the coded signals: the time-bandwidth product. It is shown that,
due to attenuation in the tissues, the matched flter output is related to the ambiguity function of the
excitation signal. Although a gain in signal-to-noise ratio of about 20 dB is theoretically possible
for the time-bandwidth product available in ultrasound, it is shown that the effects of transducer
weighting and tissue attenuation reduce the maximum gain at 10 dB for robust compression with
low sidelobes.
Frequency modulation and phase modulation are considered separately and their resolution, sidelobes,
expected signal-to-noise gain and performance in tissue imaging are discussed in detail. A
method to achieve low compression sidelobes by reducing the ripples of the amplitude spectrum
of the FM signals is described.
Application of coded excitation in array imaging is evaluated through simulations in Field II. The
low degree of the orthogonality among coded signals for ultrasound systems is first discussed, and
the effect of mismatched filtering in the cross-correlation properties of the signals is evaluated.
In linear array imaging it is found that the frame rate can be doubled without any degradation
in image quality, by using two coded sequences that have a cross-correlation of at least 11 dB.
Other coding schemes that can increase the frame rate by nearly 5 times with a small compromise
in resolution are discussed. Coded synthetic transmit aperture imaging with only 4 emissions is
shown to yield the same signal-to-noise ratio as with conventional phased-array imaging which uses 51 emissions. Further frequency-division coding can make it possible to obtain images with
acceptable resolution with only two emissions. Finally, a novel coding technique which uses pulse
train excitation is presented.
Original language | English |
---|
Publisher | Technical University of Denmark, Department of Electrical Engineering |
---|---|
Number of pages | 228 |
Publication status | Published - Dec 2001 |
Fingerprint
Dive into the research topics of 'Ultrasound imaging using coded signals'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Fast ultrasound imaging using coded signals
Misaridis, A. (PhD Student), Jensen, J. A. (Main Supervisor), Gaunholt, H. (Examiner), Franciscus, A. (Examiner) & Roth, O. (Examiner)
01/05/1998 → 04/01/2002
Project: PhD