TY - JOUR
T1 - Ultrafine particles
T2 - Exposure and source apportionment in 56 Danish homes
AU - Bekö, Gabriel
AU - Weschler, Charles J.
AU - Wierzbicka, Aneta
AU - Karottki, Dorina Gabriela
AU - Toftum, Jørn
AU - Loft, Steffen
AU - Clausen, Geo
PY - 2013
Y1 - 2013
N2 - Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ∼45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 103 cm-3), the lowest when the homes were vacant (GM: 6.1 × 103 cm-3) or the occupants were asleep (GM: 5.1 × 103 cm-3). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 103 and 6.0 × 106 particles per cm3·h/day (GM: 3.3 × 105 cm-3·h/day). On average, ∼90% of this exposure occurred outside of the period from midnight to 6 a.m. Source events, especially candle burning, cooking, toasting, and unknown activities, were responsible on average for ∼65% of the residential integrated exposure (51% without the unknown activities). Candle burning occurred in half of the homes where, on average, it was responsible for almost 60% of the integrated exposure. © 2013 American Chemical Society.
AB - Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ∼45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 103 cm-3), the lowest when the homes were vacant (GM: 6.1 × 103 cm-3) or the occupants were asleep (GM: 5.1 × 103 cm-3). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 103 and 6.0 × 106 particles per cm3·h/day (GM: 3.3 × 105 cm-3·h/day). On average, ∼90% of this exposure occurred outside of the period from midnight to 6 a.m. Source events, especially candle burning, cooking, toasting, and unknown activities, were responsible on average for ∼65% of the residential integrated exposure (51% without the unknown activities). Candle burning occurred in half of the homes where, on average, it was responsible for almost 60% of the integrated exposure. © 2013 American Chemical Society.
KW - Environmental engineering
KW - Environmental protection
KW - Housing
U2 - 10.1021/es402429h
DO - 10.1021/es402429h
M3 - Journal article
C2 - 23957328
SN - 0013-936X
VL - 47
SP - 10240
EP - 10248
JO - Environmental Science & Technology (Washington)
JF - Environmental Science & Technology (Washington)
IS - 18
ER -