Ultra-Efficient and Broadband Nonlinear AlGaAs-on-Insulator Chip for Low-Power Optical Signal Processing

Minhao Pu*, Hao Hu, Luisa Ottaviano, Elizaveta Semenova, Dragana Vukovic, Leif Katsuo Oxenløwe, Kresten Yvind

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

567 Downloads (Pure)


Four-wave mixing (FWM) is a versatile optical nonlinear parametric process that enables a plethora of signal processing functionalities in optical communication. Realization of efficient and broadband all-optical signal processing with ultra-low energy consumption has been elusive for decades. Although tremendous efforts have been put into developing various material platforms, it has remained a challenge to obtain both high efficiency and broadband operation. Here, an aluminum gallium arsenide nonlinear chip with high FWM conversion efficiency per length per pump power and an ultra-broad bandwidth is presented. Combining an ultra-high material nonlinearity and strong effective nonlinear enhancement from a high-index-contrast waveguide layout, an ultra-high conversion efficiency of −4 dB is obtained in a 3-mm-long nano-waveguide. Taking advantage of high-order dispersion, a scheme is presented to realize an ultra-broad continuous conversion bandwidth covering 1280–2020 nm. A microresonator is also utilized to demonstrate a conversion efficiency enhancement gain of more than 50 dB with respect to a waveguide device, which significantly reduces the power consumption. Moreover, wavelength conversion of an optical serial data signal is performed at a bit rate beyond terabit-per-second, showing the capabilities of this III-V semiconductor material for broadband optical signal processing.
Original languageEnglish
Article number1800111
JournalLaser & Photonics Reviews
Issue number12
Publication statusPublished - 2018


  • All‐optical wavelength conversion
  • Four‐wave mixing
  • Integrated nonlinear optics
  • Optical signal processing
  • Third‐order nonlinear materials


Dive into the research topics of 'Ultra-Efficient and Broadband Nonlinear AlGaAs-on-Insulator Chip for Low-Power Optical Signal Processing'. Together they form a unique fingerprint.

Cite this