TY - JOUR
T1 - Ubiquinone and carotene production in the Mucorales Blakeslea and Phycomyces
AU - Kuzina, Vera
AU - Cerda-Olmedo, E.
PY - 2007
Y1 - 2007
N2 - The filamentous fungi Phycomyces blakesleeanus and Blakeslea trispora (Zygomycota, Mucorales) are actual or potential industrial sources of beta-carotene and lycopene. These chemicals and the large terpenoid moiety of ubiquinone derive from geranylgeranyl pyrophosphate. We measured the ubiquinone and carotene contents of wild-type and genetically modified strains under various conditions. Light slightly increased the ubiquinone content of Blakeslea and had no effect on that of Phycomyces. Oxidative stress modified ubiquinone production in Phycomyces and carotene production in both fungi. Sexual interaction and mutations in both organisms made the carotene content vary from traces to 23 mg/g dry mass, while the ubiquinone content remained unchanged at 0.3 mg/g dry mass. We concluded that the biosyntheses of ubiquinone and carotene are not coregulated. The specific regulation for carotene biosynthesis does not affect even indirectly the production of ubiquinone, as would be expected if terpenoids were synthesized through a branched pathway that could divert precursor flows from one branch to another.
AB - The filamentous fungi Phycomyces blakesleeanus and Blakeslea trispora (Zygomycota, Mucorales) are actual or potential industrial sources of beta-carotene and lycopene. These chemicals and the large terpenoid moiety of ubiquinone derive from geranylgeranyl pyrophosphate. We measured the ubiquinone and carotene contents of wild-type and genetically modified strains under various conditions. Light slightly increased the ubiquinone content of Blakeslea and had no effect on that of Phycomyces. Oxidative stress modified ubiquinone production in Phycomyces and carotene production in both fungi. Sexual interaction and mutations in both organisms made the carotene content vary from traces to 23 mg/g dry mass, while the ubiquinone content remained unchanged at 0.3 mg/g dry mass. We concluded that the biosyntheses of ubiquinone and carotene are not coregulated. The specific regulation for carotene biosynthesis does not affect even indirectly the production of ubiquinone, as would be expected if terpenoids were synthesized through a branched pathway that could divert precursor flows from one branch to another.
U2 - 10.1007/s00253-007-1069-7
DO - 10.1007/s00253-007-1069-7
M3 - Journal article
C2 - 17609943
SN - 0175-7598
VL - 76
SP - 991
EP - 999
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 5
ER -