Two-Point Codes for the Generalised GK curve

Élise Barelli, Peter Beelen, Mrinmoy Datta, Vincent Neiger, Johan Sebastian Heesemann Rosenkilde

Research output: Contribution to journalJournal articleResearchpeer-review

346 Downloads (Pure)

Abstract

We improve previously known lower bounds for the minimum distance of certain two-point AG codes constructed using a Generalized Giulietti–Korchmaros curve (GGK). Castellanos and Tizziotti recently described such bounds for two-point codes coming from the Giulietti–Korchmaros curve (GK). Our results completely cover and in many cases improve on their results, using different techniques, while also supporting any GGK curve. Our method builds on the order bound for AG codes: to enable this, we study certain Weierstrass semigroups. This allows an efficient algorithm for computing our improved bounds. We find several new improvements upon the MinT minimum distance tables.
Original languageEnglish
JournalI E E E Transactions on Information Theory
Volume64
Issue number9
Pages (from-to)6268-6276
Number of pages9
ISSN0018-9448
DOIs
Publication statusPublished - 2018

Keywords

  • AG code
  • GGK curve
  • Order bound
  • Two-point Weierstrass semigroup

Fingerprint

Dive into the research topics of 'Two-Point Codes for the Generalised GK curve'. Together they form a unique fingerprint.
  • COFUNDPostdocDTU: COFUNDPostdocDTU

    Præstrud, M. R. (Project Participant) & Brodersen, S. W. (Project Participant)

    01/01/201431/12/2019

    Project: Research

Cite this