Two-Dimensional Materials as Catalysts for Energy Conversion

Samira Siahrostami, Charlie Tsai, Mohammadreza Karamad, Ralph Koitz, Max García-Melchor, Michal Bajdich, Aleksandra Vojvodic, Frank Abild-Pedersen, Jens K. Nørskov, Felix Studt*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Abstract: Although large efforts have been dedicated to studying two-dimensional materials for catalysis, a rationalization of the associated trends in their intrinsic activity has so far been elusive. In the present work we employ density functional theory to examine a variety of two-dimensional materials, including, carbon based materials, hexagonal boron nitride (h-BN), transition metal dichalcogenides (e.g. MoS2, MoSe2) and layered oxides, to give an overview of the trends in adsorption energies. By examining key reaction intermediates relevant to the oxygen reduction, and oxygen evolution reactions we find that binding energies largely follow the linear scaling relationships observed for pure metals. This observation is very important as it suggests that the same simplifying assumptions made to correlate descriptors with reaction rates in transition metal catalysts are also valid for the studied two-dimensional materials. By means of these scaling relations, for each reaction we also identify several promising candidates that are predicted to exhibit a comparable activity to the state-of-the-art catalysts. Graphical Abstract: Scaling relationship for the chemisorption energies of OH* and OOH* on various 2D materials.[Figure not available: see fulltext.]

Original languageEnglish
JournalCATALYSIS LETTERS
Volume146
Issue number10
Pages (from-to)1917-1921
ISSN1011-372X
DOIs
Publication statusPublished - 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Two-Dimensional Materials as Catalysts for Energy Conversion'. Together they form a unique fingerprint.

Cite this