Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles

M. Ejby, A. Guskov, Michael Jakob Pichler, G. C. Zanten, Erwin Schoof, W. Saburi, D. J. Slotboom, Maher Abou Hachem*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Human gut bifidobacteria rely on ATP-binding cassette (ABC) transporters for oligosaccharide uptake. Multiple oligosaccharide-specific solute-binding protein (SBP) genes are occasionally associated with a single ABC transporter, but the significance of this multiplicity remains unclear. Here, we characterize BlMnBP1 and BlMnBP2, the two SBPs associated to the β-manno-oligosaccharide (MnOS) ABC transporter in Bifidobacterium animalis subsp. lactis. Despite similar overall specificity and preference to mannotriose (Kd ≈80 nM), affinity of BlMnBP1 is up to 2570-fold higher for disaccharides than BlMnBP2. Structural analysis revealed a substitution of an asparagine that recognizes the mannosyl at position 2 in BlMnBP1, by a glycine in BlMnBP2, which affects substrate affinity. Both substitution types occur in bifidobacterial SBPs, but BlMnBP1-like variants prevail in human gut isolates. B. animalis subsp. lactis ATCC27673 showed growth on gluco and galactomannans and was able to outcompete a mannan-degrading Bacteroides ovatus strain in co-cultures, attesting the efficiency of this ABC uptake system. By contrast, a strain that lacks this transporter failed to grow on mannan. This study highlights SBP diversification as a possible strategy to modulate oligosaccharide uptake preferences of bifidobacterial ABC-transporters during adaptation to specific ecological niches. Efficient metabolism of galactomannan by distinct bifidobacteria, merits evaluating this plant glycan as a potential prebiotic.
Original languageEnglish
JournalMolecular Microbiology
Volume112
Issue number1
Pages (from-to)114-130
Number of pages17
ISSN0950-382X
DOIs
Publication statusPublished - 2019

Cite this

@article{e25425fef82d4012b74b6dbb2da511a5,
title = "Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles",
abstract = "Human gut bifidobacteria rely on ATP-binding cassette (ABC) transporters for oligosaccharide uptake. Multiple oligosaccharide-specific solute-binding protein (SBP) genes are occasionally associated with a single ABC transporter, but the significance of this multiplicity remains unclear. Here, we characterize BlMnBP1 and BlMnBP2, the two SBPs associated to the β-manno-oligosaccharide (MnOS) ABC transporter in Bifidobacterium animalis subsp. lactis. Despite similar overall specificity and preference to mannotriose (Kd ≈80 nM), affinity of BlMnBP1 is up to 2570-fold higher for disaccharides than BlMnBP2. Structural analysis revealed a substitution of an asparagine that recognizes the mannosyl at position 2 in BlMnBP1, by a glycine in BlMnBP2, which affects substrate affinity. Both substitution types occur in bifidobacterial SBPs, but BlMnBP1-like variants prevail in human gut isolates. B. animalis subsp. lactis ATCC27673 showed growth on gluco and galactomannans and was able to outcompete a mannan-degrading Bacteroides ovatus strain in co-cultures, attesting the efficiency of this ABC uptake system. By contrast, a strain that lacks this transporter failed to grow on mannan. This study highlights SBP diversification as a possible strategy to modulate oligosaccharide uptake preferences of bifidobacterial ABC-transporters during adaptation to specific ecological niches. Efficient metabolism of galactomannan by distinct bifidobacteria, merits evaluating this plant glycan as a potential prebiotic.",
author = "M. Ejby and A. Guskov and Pichler, {Michael Jakob} and Zanten, {G. C.} and Erwin Schoof and W. Saburi and Slotboom, {D. J.} and {Abou Hachem}, Maher",
year = "2019",
doi = "10.1111/mmi.14257",
language = "English",
volume = "112",
pages = "114--130",
journal = "Molecular Microbiology",
issn = "0950-382X",
publisher = "Wiley-Blackwell",
number = "1",

}

Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles. / Ejby, M.; Guskov, A.; Pichler, Michael Jakob; Zanten, G. C.; Schoof, Erwin; Saburi, W.; Slotboom, D. J.; Abou Hachem, Maher .

In: Molecular Microbiology, Vol. 112, No. 1, 2019, p. 114-130.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles

AU - Ejby, M.

AU - Guskov, A.

AU - Pichler, Michael Jakob

AU - Zanten, G. C.

AU - Schoof, Erwin

AU - Saburi, W.

AU - Slotboom, D. J.

AU - Abou Hachem, Maher

PY - 2019

Y1 - 2019

N2 - Human gut bifidobacteria rely on ATP-binding cassette (ABC) transporters for oligosaccharide uptake. Multiple oligosaccharide-specific solute-binding protein (SBP) genes are occasionally associated with a single ABC transporter, but the significance of this multiplicity remains unclear. Here, we characterize BlMnBP1 and BlMnBP2, the two SBPs associated to the β-manno-oligosaccharide (MnOS) ABC transporter in Bifidobacterium animalis subsp. lactis. Despite similar overall specificity and preference to mannotriose (Kd ≈80 nM), affinity of BlMnBP1 is up to 2570-fold higher for disaccharides than BlMnBP2. Structural analysis revealed a substitution of an asparagine that recognizes the mannosyl at position 2 in BlMnBP1, by a glycine in BlMnBP2, which affects substrate affinity. Both substitution types occur in bifidobacterial SBPs, but BlMnBP1-like variants prevail in human gut isolates. B. animalis subsp. lactis ATCC27673 showed growth on gluco and galactomannans and was able to outcompete a mannan-degrading Bacteroides ovatus strain in co-cultures, attesting the efficiency of this ABC uptake system. By contrast, a strain that lacks this transporter failed to grow on mannan. This study highlights SBP diversification as a possible strategy to modulate oligosaccharide uptake preferences of bifidobacterial ABC-transporters during adaptation to specific ecological niches. Efficient metabolism of galactomannan by distinct bifidobacteria, merits evaluating this plant glycan as a potential prebiotic.

AB - Human gut bifidobacteria rely on ATP-binding cassette (ABC) transporters for oligosaccharide uptake. Multiple oligosaccharide-specific solute-binding protein (SBP) genes are occasionally associated with a single ABC transporter, but the significance of this multiplicity remains unclear. Here, we characterize BlMnBP1 and BlMnBP2, the two SBPs associated to the β-manno-oligosaccharide (MnOS) ABC transporter in Bifidobacterium animalis subsp. lactis. Despite similar overall specificity and preference to mannotriose (Kd ≈80 nM), affinity of BlMnBP1 is up to 2570-fold higher for disaccharides than BlMnBP2. Structural analysis revealed a substitution of an asparagine that recognizes the mannosyl at position 2 in BlMnBP1, by a glycine in BlMnBP2, which affects substrate affinity. Both substitution types occur in bifidobacterial SBPs, but BlMnBP1-like variants prevail in human gut isolates. B. animalis subsp. lactis ATCC27673 showed growth on gluco and galactomannans and was able to outcompete a mannan-degrading Bacteroides ovatus strain in co-cultures, attesting the efficiency of this ABC uptake system. By contrast, a strain that lacks this transporter failed to grow on mannan. This study highlights SBP diversification as a possible strategy to modulate oligosaccharide uptake preferences of bifidobacterial ABC-transporters during adaptation to specific ecological niches. Efficient metabolism of galactomannan by distinct bifidobacteria, merits evaluating this plant glycan as a potential prebiotic.

U2 - 10.1111/mmi.14257

DO - 10.1111/mmi.14257

M3 - Journal article

VL - 112

SP - 114

EP - 130

JO - Molecular Microbiology

JF - Molecular Microbiology

SN - 0950-382X

IS - 1

ER -