Tuning the two-dimensional electron liquid at oxide interfaces by buffer-layer-engineered redox reactions

Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO$_3$ (STO) achieved using polar La$_{7/8}$Sr$_{1/8}$MnO$_3$ (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant x-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials, University of British Columbia, Canadian Light Source
Contributors: Chen, Y., Green, R. J., Sutarto, R., He, F., Linderoth, S., Sawatzky, G. A., Pryds, N.
Pages: 7062–7066
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Nano Letters
Volume: 17
Issue number: 11
ISSN (Print): 1530-6984
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 13.07
Web of Science (2017): Impact factor 12.08
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
Tuning_oxide_2DEL_by_buffer_layer_engineered_redox_reactions_Revised_Manuscript_final001.pdf. Embargo ended: 21/10/2018
DOI:
10.1021/acs.nanolett.7b03744
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review