Tuning the composition of metastable CoxNiyMg100−xy(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst

Xiaoli Fan, Zhiting Liu, Yi-An Zhu, Gangsheng Tong, Jingdong Zhang, Christian Engelbrekt, Jens Ulstrup, Kake Zhu, Xinggui Zhou

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Finding controllable, low-cost, and scalable ways to generate Ni-based catalysts is the bottleneck for methane dry reforming catalyst design. A new method for generating trimetallic CoxNiyMg100−xyO solid solution platelets enclosed by (111) facets has been developed from the topotactic pyrolysis of the metastable precursor CoxNiyMg100−xy(OH)(OCH3) derived from solvothermal synthesis. The catalyst composition and reaction conditions have been modulated to achieve maximum coke resistance and catalyst stability. Long-term stability for 1000 h time on stream at 800°C has been achieved for the optimized Co0.075Ni7.425Mg92.5O catalyst. The role of Co in the catalyst has been disclosed through kinetic measurements and detailed characterization of the spent catalysts. Co is enriched on the Co–Ni alloy surface under reforming conditions and accelerates the gasification of coke intermediates. Co also enhances the chemisorption of oxygen and reduces the activation energy for methane fragmentation, which is the rate-determining step for the overall reaction.
Original languageEnglish
JournalJournal of Catalysis
Volume330
Pages (from-to)106-119
Number of pages14
ISSN0021-9517
DOIs
Publication statusPublished - 2015

Keywords

  • Methane
  • Carbon dioxide
  • Reforming
  • Reaction kinetics
  • Coke deposition
  • Cobalt
  • Nickel
  • Solvothermal synthesis

Fingerprint

Dive into the research topics of 'Tuning the composition of metastable CoxNiyMg100−xy(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst'. Together they form a unique fingerprint.

Cite this