Tunable photonic bandgap fiber based devices for optical networks

In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid crystals, have proven to be a candidate for such a platform. Microstructured optical fibers offer unique wave-guiding properties that are strongly related to the design of the air holes in the cladding of the fiber. These wave-guiding properties may be altered by filling the air holes with a material, for example a liquid crystal that changes optical properties when subjected to, for example, an optical or an electrical field. The utilization of these two basic properties allows design of tunable optical devices for optical networks. In this work, we focus on applications of such devices and discuss recent results.

General information
Publication status: Published
Organisations: Fibers & Nonlinear Optics, Department of Photonics Engineering, Systems, University of Bologna
Contributors: Alkeskjold, T. T., Scolari, L., Rottwitt, K., Bjarklev, A. O., Peucheret, C.
Pages: 140-143
Publication date: 2005

Host publication information
Title of host publication: ICTON 2005 proceedings
Publisher: IEEE
ISBN (Print): 0-7803-9236-1
Electronic versions:
Alkeskjold.pdf
DOIs:
10.1109/ICTON.2005.1505770

Bibliographical note
Copyright: 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE
Source: orbit
Source-ID: 183092
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2005 › Research › peer-review