Tunable femtosecond Cherenkov fiber laser - DTU Orbit (08/11/2019)

Tunable femtosecond Cherenkov fiber laser

We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications.

General information

Publication status: Published
Organisations: Department of Photonics Engineering, Fiber Optics, Devices and Non-linear Effects, University of Illinois
Contributors: Liu, X., Svane, A. S., Lægsgaard, J., Tu, H., Boppart, S., Turchinovich, D.
Pages: 218-221
Publication date: 2014

Host publication information

Title of host publication: Proceedings of IEEE 7th International Conference on Advanced Infocomm Technology
Publisher: IEEE
ISBN (Print): 9781479954544
Keywords: bio-optics, fibre lasers, high-speed optical techniques, holey fibres, laser tuning, nonlinear optics, photonic crystals, ytterbium, Communication, Networking and Broadcast Technologies, Photonics and Electrooptics, biophotonics, Cherenkov radiation, electrically-tunable femtosecond Cherenkov fiber laser, Femtosecond lasers, Fiber lasers, Laser excitation, nonlinear photonic crystal fiber, Optical fiber amplifiers, Optical fiber dispersion, Optical fiber polarization, Photonic crystal fibers, Pump lasers, pump source, Ultrafast nonlinear optics, Ultrafast optics, wave-conversion medium
DOIs: 10.1109/ICAIT.2014.7019556
Source: FindIt
Source ID: 273916417
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2015 › Research › peer-review