In this work we extend a high-order Boussinesq-type (finite difference) model, capable of simulating waves out to wavenumber times depth $k\theta < 25$, to include a moving sea-bed, for the simulation of earthquake- and landslide-induced tsunamis. The extension is straightforward, requiring only an additional term within the kinematic bottom condition. As first test cases we simulate linear and nonlinear surface waves generated from both positive and negative impulsive bottom movements. The computed results compare well against earlier theoretical, numerical, and experimental values. Additionally, we show that the long-time (fully nonlinear) evolution of waves resulting from an upthrusted bottom can eventually result in true solitary waves, consistent with theoretical predictions. It is stressed, however, that the nonlinearity used far exceeds that typical of geophysical tsunamis in the open ocean. The Boussinesq-type model is then used to simulate numerous tsunami-type events generated from submerged landslides, in both one and two horizontal dimensions. The results again compare well against previous experiments and/or numerical simulations. The new extension compliments recently developed run-up capabilities within this approach, and as demonstrated, the model can therefore treat tsunami events from their initial generation, through their later propagation, and final run-up phases. The developed model is shown to maintain reasonable computational efficiency, and is therefore attractive for the simulation of such events, especially in cases where dispersion is important.

General information
Publication status: Published
Organisations: Coastal, Maritime and Structural Engineering, Department of Mechanical Engineering
Contributors: Fuhrman, D. R., Madsen, P. A.
Pages: 747-758
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Coastal Engineering
Volume: 56
Issue number: 7
ISSN (Print): 0378-3839
Ratings:
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.007 SNIP 2.506
Web of Science (2009): Indexed yes
Original language: English
Keywords: Boussinesq equations, Run-up, Tsunamis
DOIs:
10.1016/j.coastaleng.2009.02.004
URLs:
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCX-4VTK5MX-1&_user=10&_coverDate=07%2F31%2F2009&_alid=932284432&_rdoc=1&_fmt=high&_orig=search&_cdi=5966&_sort=d&_docanchor=&view=c&_ct=16&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=57bf2c99a3328ce5a6b4f40ec69951f8
Source: orbit
Source ID: 244558
Research output: Contribution to journal › Journal article – Annual report year: 2009 › Research › peer-review