TY - JOUR

T1 - Transport coefficients for electrolytes in arbitrarily shaped nano- and microfluidic channels

AU - Mortensen, Niels Asger

AU - Olesen, Laurits Højgaard

AU - Bruus, Henrik

PY - 2006

Y1 - 2006

N2 - We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the general problem of an arbitrary cross-section and obtain general results in linear-response theory for the hydraulic and electrical transport coefficients which satisfy Onsager relations. In the limit of non-overlapping Debye layers, the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the geometrical correction factor for the Hagen-Poiseuille part of the problem. In particular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.

AB - We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the general problem of an arbitrary cross-section and obtain general results in linear-response theory for the hydraulic and electrical transport coefficients which satisfy Onsager relations. In the limit of non-overlapping Debye layers, the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the geometrical correction factor for the Hagen-Poiseuille part of the problem. In particular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.

M3 - Journal article

VL - 8

SP - 37

JO - NEW J. PHYSICS

JF - NEW J. PHYSICS

ER -