Transition-state theory and dynamical corrections

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

We consider conventional transition-state theory, and show how quantum dynamical correction factors can be incorporated in a simple fashion, as a natural extension of the fundamental formulation. Corrections due to tunneling and non-adiabatic dynamics are discussed, with emphasis on the latter. The correction factor due to non-adiabatic dynamics is considered in relation to the non-activated dissociative sticking of N-2 on Fe(111). For this process, conventional transition-state theory gives a sticking probability which is about 10 times too large (at T = 300 K). We estimate that the sticking probability is reduced by a factor of 2 due to non-adiabatic dynamics.
Original languageEnglish
JournalPhysical Chemistry Chemical Physics
Volume4
Issue number24
Pages (from-to)5995-6000
ISSN1463-9076
Publication statusPublished - 2002

Fingerprint

Dive into the research topics of 'Transition-state theory and dynamical corrections'. Together they form a unique fingerprint.

Cite this