TY - JOUR
T1 - Transcriptional profiling of the bovine hepatic response to experimentally induced E. coli mastitis
AU - Jørgensen, Hanne Birgitte Hede
AU - Buitenhuis, Bart
AU - Røntved, Christine Maria
AU - Jiang, Li
AU - Ingvartsen, Klaus Lønne
AU - Sørensen, Peter
PY - 2012
Y1 - 2012
N2 - The mammalian liver works to keep the body in a state of homeostasis and plays an important role in systemic acute phase response to infections. In this study we investigated the bovine hepatic acute phase response at the gene transcription level in dairy cows with experimentally E. coli-induced mastitis. At time = 0, each of 16 periparturient dairy cows received 20-40 CFU of live E. coli in one front quarter of the udder. A time series of liver biopsies was collected at -144, 12, 24 and 192 hours relative to time of inoculation. Changes in transcription levels in response to E. coli inoculation were analyzed using the Bovine Genome Array and tested significant for 408 transcripts over the time series (adjusted p≤ 0.05; abs(fold-change)>2). After 2-D clustering, transcripts represented three distinct transcription profiles: 1) regulation of gene transcription and apoptosis, 2) responses to cellular stress invoked by reactive metabolites, and 3) metabolism and turnover of proteins. The results showed that the liver went through a period of perturbations to its normal homeostatic condition during the first 24 hours following the E. coli-induced intra-mammary inflammation. In previous studies, bacterial lipopolysaccaride, LPS, was used for intra-mammary stimulation to mimic E. coli infection. Comparing responses to LPS and E. coli, induced biochemical processes were similar but not identical (94% and 85% similarity between corresponding samples at early and late acute phase, respectively), but their kinetics were not. A notable difference concerned transcription of factors associated with oxidative stress in E. coli-induced liver responses
AB - The mammalian liver works to keep the body in a state of homeostasis and plays an important role in systemic acute phase response to infections. In this study we investigated the bovine hepatic acute phase response at the gene transcription level in dairy cows with experimentally E. coli-induced mastitis. At time = 0, each of 16 periparturient dairy cows received 20-40 CFU of live E. coli in one front quarter of the udder. A time series of liver biopsies was collected at -144, 12, 24 and 192 hours relative to time of inoculation. Changes in transcription levels in response to E. coli inoculation were analyzed using the Bovine Genome Array and tested significant for 408 transcripts over the time series (adjusted p≤ 0.05; abs(fold-change)>2). After 2-D clustering, transcripts represented three distinct transcription profiles: 1) regulation of gene transcription and apoptosis, 2) responses to cellular stress invoked by reactive metabolites, and 3) metabolism and turnover of proteins. The results showed that the liver went through a period of perturbations to its normal homeostatic condition during the first 24 hours following the E. coli-induced intra-mammary inflammation. In previous studies, bacterial lipopolysaccaride, LPS, was used for intra-mammary stimulation to mimic E. coli infection. Comparing responses to LPS and E. coli, induced biochemical processes were similar but not identical (94% and 85% similarity between corresponding samples at early and late acute phase, respectively), but their kinetics were not. A notable difference concerned transcription of factors associated with oxidative stress in E. coli-induced liver responses
KW - Gene expression
KW - acute phase response
KW - LPS
KW - gram negative bacteria
U2 - 10.1152/physiolgenomics.00084.2011
DO - 10.1152/physiolgenomics.00084.2011
M3 - Journal article
C2 - 22496490
SN - 1094-8341
VL - 44
SP - 595
EP - 606
JO - Physiological Genomics
JF - Physiological Genomics
IS - 11
ER -