TY - JOUR
T1 - Trajectory surface-hopping photoinduced dynamics from Rydberg states of trimethylamine
AU - Pápai, Mátyás Imre
AU - Li, Xusong
AU - Nielsen, Martin M.
AU - Møller, Klaus Braagaard
PY - 2021
Y1 - 2021
N2 - We present a computational study on nonadiabatic excited-state dynamics initiated from the 3p Rydberg states of trimethylamine (TMA). We utilise a methodology based on full-dimensional (39 D) trajectory surface-hopping (TSH) simulations, in which propagation is carried out on on-the-fly density functional theory (DFT)/time-dependent DFT (TD-DFT) potentials. Both our electronic structure benchmarks to high-level ab initio methods (EOM-CCSD, CASPT2) and TSH simulations demonstrate high-accuracy of the applied CAM-B3LYP functional for the description of Rydberg excited states. Based on our excited-state simulations, we construct the following mechanistic picture: when pumped resonantly to the 3p Rydberg manifold, TMA coherently vibrates along the planarisation mode with a period of 104 fs and an exponential coherence decay time constant of 240 fs. Nonadiabatic dynamics occur on a faster (∼1 ps) and a slower (∼3 ps) timescale, along the N-C stretching mode by mixing with a dissociative σN-C* state. As a minor relaxation channel, 3p → 3s internal conversion occurs via branching at the σN-C*/3s intersection. We find that photodissociaton is hardly observable within 3 ps (1%), which is a failure of the range-separated hybrid CAM-B3LYP functional, as a consequence of its static electron correlation deficiency at long range. In contrast, pure DFT (GGA-BLYP) provides an accurate long-range description (19% dissociation yield), also supported by comparison to recent ultrafast experiments, even if the Rydberg state energies are significantly underestimated (>1 eV). Finally, we reveal the crucial role of vibrational coherence and energy transfer from the planarisation mode for N-C bond activation and resulting nonadiabatic dynamics. The present work illustrates the importance of nuclear-electronic coupling for excited-state dynamics and branching at conical intersections.
AB - We present a computational study on nonadiabatic excited-state dynamics initiated from the 3p Rydberg states of trimethylamine (TMA). We utilise a methodology based on full-dimensional (39 D) trajectory surface-hopping (TSH) simulations, in which propagation is carried out on on-the-fly density functional theory (DFT)/time-dependent DFT (TD-DFT) potentials. Both our electronic structure benchmarks to high-level ab initio methods (EOM-CCSD, CASPT2) and TSH simulations demonstrate high-accuracy of the applied CAM-B3LYP functional for the description of Rydberg excited states. Based on our excited-state simulations, we construct the following mechanistic picture: when pumped resonantly to the 3p Rydberg manifold, TMA coherently vibrates along the planarisation mode with a period of 104 fs and an exponential coherence decay time constant of 240 fs. Nonadiabatic dynamics occur on a faster (∼1 ps) and a slower (∼3 ps) timescale, along the N-C stretching mode by mixing with a dissociative σN-C* state. As a minor relaxation channel, 3p → 3s internal conversion occurs via branching at the σN-C*/3s intersection. We find that photodissociaton is hardly observable within 3 ps (1%), which is a failure of the range-separated hybrid CAM-B3LYP functional, as a consequence of its static electron correlation deficiency at long range. In contrast, pure DFT (GGA-BLYP) provides an accurate long-range description (19% dissociation yield), also supported by comparison to recent ultrafast experiments, even if the Rydberg state energies are significantly underestimated (>1 eV). Finally, we reveal the crucial role of vibrational coherence and energy transfer from the planarisation mode for N-C bond activation and resulting nonadiabatic dynamics. The present work illustrates the importance of nuclear-electronic coupling for excited-state dynamics and branching at conical intersections.
U2 - 10.1039/d1cp00771h
DO - 10.1039/d1cp00771h
M3 - Journal article
C2 - 33913464
SN - 1463-9076
VL - 23
SP - 10964
EP - 10977
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 18
ER -