Trailed vorticity modeling for aeroelastic wind turbine simulations in standstill

Georg Pirrung*, Helge Aagaard Madsen , Scott Schreck

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

184 Downloads (Pure)

Abstract

Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as an addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against standstill measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in the case of the elliptical wing but underpredicts the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible. This article also contains aeroelastic simulations of the DTU 10 MW reference turbine in standstill at turbulent inflow with a fixed and idling rotor. The influence of the trailed vorticity modeling on the extreme flapwise blade root bending moment is found to be small.
Original languageEnglish
JournalWind Energy Science
Volume2
Issue number2
Pages (from-to)521-532
ISSN2366-7443
DOIs
Publication statusPublished - 2017

Keywords

  • Renewable energy sources
  • TJ807-830

Fingerprint Dive into the research topics of 'Trailed vorticity modeling for aeroelastic wind turbine simulations in standstill'. Together they form a unique fingerprint.

Cite this