Topology optimized gold nanostrips for enhanced near-infrared photon upconversion - DTU Orbit (17/08/2019)

Topology optimized gold nanostrips for enhanced near-infrared photon upconversion

This letter presents a topology optimization study of metal nanostructures optimized for electric-field enhancement in the infrared spectrum. Coupling of such nanostructures with suitable ions allows for an increased photon-upconversion yield, with one application being an increased solar-cell efficiency by exploiting the long-wavelength part of the solar spectrum. In this work, topology optimization is used to design a periodic array of two-dimensional gold nanostrips for electric-field enhancements in a thin film doped with upconverting erbium ions. The infrared absorption band of erbium is utilized by simultaneously optimizing for two polarizations, up to three wavelengths, and three incident angles. Geometric robustness towards manufacturing variations is implemented considering three different design realizations simultaneously in the optimization. The polarization-averaged field enhancement for each design is evaluated over an 80 nm wavelength range and a ±15-degree incident angle span. The highest polarization-averaged field enhancement is 42.2 varying by maximally 2% under ±5 nm near-uniform design perturbations at three different wavelengths (1480 nm, 1520 nm, and 1560 nm). The proposed method is generally applicable to many optical systems and is therefore not limited to enhancing photon upconversion.

General information

Publication status: Published

Organisations: Department of Mechanical Engineering, Solid Mechanics, Aarhus University

Contributors: Vester-Petersen, J., Christiansen, R. E., Julsgaard, B., Balling, P., Sigmund, O., Madsen, S. P.

Number of pages: 5

Publication date: 2017

Peer-reviewed: Yes

Publication information

Volume: 111

Issue number: 13

Article number: 133102

ISSN (Print): 0003-6951

Ratings:

BFI (2017): BFI-level 2

Scopus rating (2017): CiteScore 3.25 SJR 1.382 SNIP 1.243

Web of Science (2017): Impact factor 3.495

Web of Science (2017): Indexed yes

Original language: English

Electronic versions:

topo.pdf. Embargo ended: 25/09/2018

DOIs:

10.1063/1.4998552

Source: FindIt

Source-ID: 2390432243

Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review