Topology Optimization of Segmented Thermoelectric Generators

Christian Lundgaard*, Ole Sigmund, Rasmus Bjørk

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

37 Downloads (Pure)


The thermoelectric (TE) power output, fP, and conversion efficiency, fη, for segmented thermoelectric generators (TEGs) have been optimized by spatially distributing two TE materials (BiSbTe and Skutterudite) using a numerical gradient-based topology optimization approach. The material properties are temperature-dependent, and the segmented TEGs are designed for various heat transfer rates at the hot and cold reservoirs. The topology-optimized design solutions are characterized by spike-shaped features which enable the designs to operate in an intermediate state between the material phases. Important design parameters, such as the device dimensions, objective functions and heat transfer rates, are identified, investigated and discussed. Comparing the topology optimization approach with the classical segmentation approach, the performance improvements of fP and fη design problems depend on the heat transfer rates at the hot and the cold reservoirs, the objective function and the device dimensions. The largest performance improvements for the problems investigated are ≈ 6%.
Original languageEnglish
JournalJournal of Electronic Materials
Issue number12
Pages (from-to)6959–6971
Publication statusPublished - 2018


  • Conversion efficiency
  • Electric power output
  • Thermoelectric energy conversion
  • Topology optimization

Cite this