Abstract
The aim of this study is to present an innovative strategy for selecting a reactor for a specific process. Instead of adapting the process to a well-known reactor shape, a topology optimization method is used to obtain the best reactor configuration, and is applied to a biocatalyic reaction system as a case study. The Evolutionary Structure Optimization (ESO) method is applied using an interface between Matlab® and the computational fluid dynamic simulation software ANSYS CFX®. In the case study, theESO method is applied to optimize the spatial distribution of immobilized enzyme inside a microreactor. The results allow evaluating which regions in the microreactorhave more importance for the product formation. In fact, it was possible to simulate the improvement of the outlet product concentration per same amount of enzyme by modifying the spatial distribution of the immobilized enzyme.
Original language | English |
---|---|
Title of host publication | Proceedings of the 25th European Symposium on Computer Aided Process Engineering |
Editors | Krist V. Gernaey, Jakob K. Huusom, Rafiqul Gani |
Volume | 37 |
Publisher | Elsevier |
Publication date | 2015 |
Pages | 1463-1468 |
DOIs | |
Publication status | Published - 2015 |
Event | 25th European Symposium on Computer Aided Process Engineering : 12th International Symposium on Process Systems Engineering - Copenhagen, Denmark Duration: 31 May 2015 → 4 Jun 2015 http://www.pse2015escape25.dk/ |
Conference
Conference | 25th European Symposium on Computer Aided Process Engineering |
---|---|
Country/Territory | Denmark |
City | Copenhagen |
Period | 31/05/2015 → 04/06/2015 |
Internet address |
Series | Computer Aided Chemical Engineering |
---|---|
ISSN | 1570-7946 |
Keywords
- Topology optimization
- Biocatalysis
- Immobilized enzymes
- CFD