Topology and shape optimization of induced-charge electro-osmotic micropumps

Misha Marie Gregersen, Fridolin Okkels, M. Z. Bazant, Henrik Bruus

    Research output: Contribution to journalJournal articleResearchpeer-review

    217 Downloads (Pure)

    Abstract

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology-optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance.
    Original languageEnglish
    JournalNew Journal of Physics
    Volume11
    Pages (from-to)075019
    ISSN1367-2630
    DOIs
    Publication statusPublished - 2009

    Fingerprint Dive into the research topics of 'Topology and shape optimization of induced-charge electro-osmotic micropumps'. Together they form a unique fingerprint.

    Cite this