TY - JOUR
T1 - TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production
AU - Alvarado-Morales, Merlin
AU - Tsapekos, Panagiotis
AU - Awais, Muhammad
AU - Gulfraz, Muhammad
AU - Angelidaki, Irini
PY - 2017
Y1 - 2017
N2 - The present study deals with the application of an advanced oxidation process combining UV irradiation in the presence of the photocatalyst titanium dioxide (TiO2), as an effective pretreatment method of wheat straw as means for increasing its biodegradability for increased biogas production by anaerobic digestion (AD). Especially attention was paid in oxidation of the lignin in straw, besides release the sugars from the lignocellulosic structure of straw. Specifically, four different TiO2 concentrations (0.0, 0.5, 1.0, 1.5, and 2.0% (w/w) TiO2) were tested at three different irradiation times (0, 1, 2, and 3 h). Products of lignin-fraction oxidation, namely, vanillic acid, ferullic acid and acetic acid were quantified for each set of pretreatment conditions. Subsequently, biochemical methane potentials (BMPs) assays were conducted under thermophilic conditions from differentially pretreated samples and the pretreatment with the best performance was further tested in continuous mode operation. From BMP assays, 1.5% (w/w) TiO2/straw at 3 h of UV light exposure pretreatment resulted in 37% (p < 0.05) increase in methane yield and 25% in CSTRs. It was concluded that the presence of TiO2 and the products of lignin oxidation did not inhibit the AD process. Finally, a simplified energy assessment showed that all pretreatment conditions become feasible when amounts of substrate to be treated are greater than the threshold value of 1.15 g.
AB - The present study deals with the application of an advanced oxidation process combining UV irradiation in the presence of the photocatalyst titanium dioxide (TiO2), as an effective pretreatment method of wheat straw as means for increasing its biodegradability for increased biogas production by anaerobic digestion (AD). Especially attention was paid in oxidation of the lignin in straw, besides release the sugars from the lignocellulosic structure of straw. Specifically, four different TiO2 concentrations (0.0, 0.5, 1.0, 1.5, and 2.0% (w/w) TiO2) were tested at three different irradiation times (0, 1, 2, and 3 h). Products of lignin-fraction oxidation, namely, vanillic acid, ferullic acid and acetic acid were quantified for each set of pretreatment conditions. Subsequently, biochemical methane potentials (BMPs) assays were conducted under thermophilic conditions from differentially pretreated samples and the pretreatment with the best performance was further tested in continuous mode operation. From BMP assays, 1.5% (w/w) TiO2/straw at 3 h of UV light exposure pretreatment resulted in 37% (p < 0.05) increase in methane yield and 25% in CSTRs. It was concluded that the presence of TiO2 and the products of lignin oxidation did not inhibit the AD process. Finally, a simplified energy assessment showed that all pretreatment conditions become feasible when amounts of substrate to be treated are greater than the threshold value of 1.15 g.
KW - Biogas
KW - Ferullic acid
KW - Lignin
KW - Photocatalytic oxidation
KW - Vanillic acid
KW - Wheat straw
U2 - 10.1016/j.anaerobe.2016.11.002
DO - 10.1016/j.anaerobe.2016.11.002
M3 - Journal article
C2 - 27865913
SN - 1075-9964
VL - 46
SP - 155
EP - 161
JO - Anaerobe
JF - Anaerobe
ER -