Time dependent policy-based access control

Access control policies are essential to determine who is allowed to access data in a system without compromising the data's security. However, applications inside a distributed environment may require those policies to be dependent on the actual content of the data, the flow of information, while also on other attributes of the environment such as the time. In this paper, we use systems of Timed Automata to model distributed systems and we present a logic in which one can express time-dependent policies for access control. We show how a fragment of our logic can be reduced to a logic that current model checkers for Timed Automata such as UPPAAL can handle and we present a translator that performs this reduction. We then use our translator and UPPAAL to enforce time-dependent policy-based access control on an example application from the aerospace industry.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Formal Methods
Contributors: Vasilikos, P., Nielson, F., Nielson, H. R.
Number of pages: 18
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Leibniz International Proceedings in Informatics
Volume: 90
ISSN (Print): 1868-8969
Ratings:
Scopus rating (2017): CiteScore 0.85 SJR 0.363 SNIP 0.825
Original language: English
Keywords: Software, Access control, Time-dependent policies, Timed automata, UPPAAL, Aerospace industry, Automata theory, Computer circuits, Model checking, Network security, Access control policies, Current modeling, Distributed environments, Distributed systems, Policy based access control, Time dependent, Timed Automata, Computer Theory (Includes Formal Logic, Automata Theory, Switching Theory and Programming Theory), Computer Circuits, Computer Software, Data Handling and Applications
Electronic versions:
LiPIcs_TIME_2017_21.pdf
DOIs:
10.4230/LIPIcs.TIME.2017.21
Source: FindIt
Source ID: 2392096119
Research output: Contribution to journal › Conference article – Annual report year: 2017 › Research › peer-review