Abstract
To increase the ecological validity of outcomes from laboratory evaluations of hearing and hearing devices, it is desirable to introduce more realistic outcome measures in the laboratory. This article presents and discusses three outcome measures that have been designed to go beyond traditional speech-in-noise measures to better reflect realistic everyday challenges. The outcome measures reviewed are: the Sentence-final Word Identification and Recall (SWIR) test that measures working memory performance while listening to speech in noise at ceiling performance; a neural tracking method that produces a quantitative measure of selective speech attention in noise; and pupillometry that measures changes in pupil dilation to assess listening effort while listening to speech in noise. According to evaluation data, the SWIR test provides a sensitive measure in situations where speech perception performance might be unaffected. Similarly, pupil dilation has also shown sensitivity in situations where traditional speech-in-noise measures are insensitive. Changes in working memory capacity and effort mobilization were found at positive signal-to-noise ratios (SNR), that is, at SNRs that might reflect everyday situations. Using stimulus reconstruction, it has been demonstrated that neural tracking is a robust method at determining to what degree a listener is attending to a specific talker in a typical cocktail party situation. Using both established and commercially available noise reduction schemes, data have further shown that all three measures are sensitive to variation in SNR. In summary, the new outcome measures seem suitable for testing hearing and hearing devices under more realistic and demanding everyday conditions than traditional speech-in-noise tests.
Original language | English |
---|---|
Journal | Ear and Hearing |
Volume | 41 |
Issue number | Suppl. 1 |
Pages (from-to) | 39S-47S |
ISSN | 0196-0202 |
DOIs | |
Publication status | Published - 2020 |